適用性
鎢極氬弧焊,以人工或自動操作都適宜,且能用於持續焊接、間續焊接(有時稱為‘跳焊’)和點焊,因為其電極棒是非消耗性的,故可不需加入熔填金屬而僅熔合母材金屬做焊接,然而對於個別的接頭,依其需要也許需使用熔填金屬。
鎢極氬弧焊是一種全姿勢位置焊接方式,且特別適於薄板的焊接—經常可薄至0.005英寸。
焊接的金屬
鎢極氬弧焊的特性使其能使用於大多數的金屬和合金的焊接,可用鎢極氬弧焊焊接的金屬包括碳鋼、合金鋼、不鏽鋼、耐熱合金、難熔金屬、鋁合金、鎂合金、鈹合金、銅合金、鎳合金、鈦合金和鋯合金等等。
鉛和鋅很難用鎢極氬弧焊方式焊接,這些金屬的低熔點使焊接控制極端的困難,鋅在1663F汽化,而此溫度仍比電弧溫度低很多,且由於鋅的揮發而使焊道不良,表面鍍鉛、錫、鋅、鎘或鋁的鋼和其它在較高溫度熔化的金屬,可用電弧焊接,但需特殊的程式。
在鍍層的金屬中的焊道由於“互動合金”的結果。很可能具有低的機械性質為防止在鍍層的金屬焊接中產生互動合金作用,必須將要焊接的區域的表面鍍層移除,焊接後在修補。
鎢極氬弧焊能套用於廣泛厚度範圍的金屬焊接,此方式非常適合於焊接3mm厚以下物件,因為其電弧產生強烈的、集中熱量,而產生高焊接速度,使用熔填金屬能做多道焊接。
雖然6.25mm以上的厚度的母材金屬,通常使用其他焊接方式。但是,需高品質的厚焊件有使用鎢極氬弧焊做多層焊接。例如在8m直徑的火箭發動器,15mm厚的外殼製造中,以鎢極氬弧焊使用填充金屬做縱向和圓周多道焊接,雖然對此厚的金屬而言,此焊接方式較慢,但因為焊道的高品質要求,故而使用TIG焊接。
鎢極氬弧焊可成功的焊接多種“箔厚度”的合金,薄板焊接需要精密的裝置固定,對於箔厚度的金屬。需使用機械或自動焊接,“高溫電離子電弧焊接”經常被記為是鎢極氬弧焊的一種變化,對於焊接薄板具有更多的優點。
TIG的基礎
因為在鎢極氬弧焊中,其熱量是在極棒和工作物之間產生,而將工作物邊緣熔化且當焊道熔池凝固時必須清潔,接合在一起。為了能以鎢極氬弧焊得到良好的品質的焊道,基本上必須將要焊接的所有 表面和臨近的區域清潔乾淨,如果使用熔填金屬也必須清潔。
另一基本要求是要焊接的組成件的組合,必須牢固的保持在正確 的相關的 位置上,當組合方式是高要求,且工作物薄,形狀複雜。不使用熔填金屬焊接或使用自動焊接時,需使用的裝置具。
(一) 起弧
通常使用“起弧”的方法是引起電子發射和氣體離子化開始的方式;可經由能化的電極棒接觸工作物且快速抽回到其所需的電弧長度,或使用導弧,或使用在電極棒和工作物之間產生高頻火花的輔助裝置引弧,而得到此放射和離子的能量;電極棒從工作物上做機械式的抽回方式只能用於直流電焊機的機械化的焊接,然而,導弧起動方式,可用於手操作和機械化焊接,但是也只限於直流電焊機,高頻火花起弧方式可套用於交流或直流電焊機的手操作焊接,許多電焊機都有產生高頻火花的裝置作起弧和穩定電弧。
(二) 電極棒和熔填金屬位置
在手操作鎢極氬弧焊中的電極棒和熔填金屬位置表示於圖1中,一旦引弧既保持焊槍使電極棒位於離工作物表面約75º角度處,且指向焊接的方向,開始焊接時,電弧通常以打圓圈的方式移動直到足夠的目材金屬熔化以生產適宜大小的熔池(見圖1a)。當達到適當的熔合時,將焊槍沿著焊接物接頭的相鄰邊緣逐漸的移動。如此漸漸的熔接工作物,當熔填金屬是以手操作添加時經常是保持在距工作物表面約15º的角度,且緩慢的進入熔池中(見圖1c),必須小心的送入熔填金屬以避免擾亂氣體保護或接觸電極棒,且因熔填條端部氧化或電極棒的污染。熔填金屬條可持續的加入或反覆的“侵入”與“抽出”。
熔填金屬能以保持熔填條與焊道成線狀排列的方式持續加入(時常使用以V形接頭的多焊道接中)或者以熔填條和焊槍左右擺動的方式將熔填條送入熔池(時常使用以表面加層的一種方式)。
停止焊接時,將熔填金屬從熔池中抽回,但暫時的保持在氣體保護下。以防止熔填金屬氧化,然後在熄弧之前移動焊槍至熔池的前方邊緣,將焊槍提升到剛好足以熄弧但又不足以引起熔坑和電極棒污染的高度而斷弧,最佳的操作是以腳踏控制方式逐漸的減少電流而不需提升焊槍。
(三) 電弧長度
在許多的全自動鎢極氬弧焊接套用中,使用的電弧長度約等於3/2倍的電極棒直徑,但可依特定的套用而變化,也可依焊工所喜用的選擇而定,然而,電弧長度越長,擴散到周圍大氣中的熱量越高,而且,長的電弧通常會妨礙(至某一程度)焊接的穩定進行,有一例外是在管路中之“插承接頭”,以官軸在垂直位置的焊接中,長的電弧可比短的電弧產生較平滑外形的填角焊接。
(四) 手工和自動的操作
在手工的和全自動的鎢極氬弧焊之間有一個區別,即是:手工焊接是以“焊工”做之,全自動焊接是以“操作者”做之;例如腳踏控制焊接電流和轉換開關的手工焊接的改良方式都是趨向自動焊接的初步發展;使用持握和帶動焊槍以定速或按照計畫的速度移動,且能自動調整電弧電壓(電弧長度),自動開關和停止之設備,既構成全自動焊接。
(五) 焊工技術
操作人員的選擇和訓練主要是取決於使用的設備之“自動程度”,因為鎢極氬弧焊是最經常使用於接合金屬片的配件,且因為在其套用中,焊工能很容易的處理相當輕小的組成件,故而焊工經常需花費其部分的時間作清潔,組合裝置固定和虛焊等操作處理,而且除了需要高度的手工技巧,耐心的訓練以得到良好品質的焊道以外,有時焊工具有機械的技術,將要焊的組合件作適當的組合和裝置固定。
特定焊接技術的需要會隨著由一種焊接方式改為另一種焊接方式而變化,例如一位精以手工操作氣保焊接的焊工,需外加訓練才能有資格做鎢極氬弧焊,另外,在某些套用中需特別的技術,例如消耗性背墊環的安置和焊接和修補焊接等。
(六)檢驗
鎢極氬弧焊的檢驗包括所有的非破壞性方式,從金屬片形焊物的表面檢驗至較厚焊接物的放射線(X光)和超聲波方式檢驗,以檢查表面以下(內部)較可能發生的缺陷。
焊接電流
在任何焊接操作的控制中“電流”是最重要的操作條件,因為其與滲透的深度,焊接速度,焊著速度和焊道的品質皆有關;基本上,有三種焊接電流可供選擇:(a)直流正極性,(b)直流反極性(c)交流(d)。在此三種電流上附加高頻電流,可得到某些所需的效應表 1中列出各種不同的金屬焊接的電流型試選擇說明。
電焊機
鎢極氬弧焊的電焊機有:(a)變壓器---整流器式,直流輸出。(b)變壓器式,交流輸出(c)動力驅動發電機----電力馬達驅動.(只供ac輸出),或引擎驅動(可供 ac或dc輸出)。
變壓器和整流器式電焊機具有數個優於動力驅動發電機式的優點:低的最初成本,暖機期間沒有電流降,操作安靜,保養和操作成本低,沒有轉動部分,停頓時功率輸入低,引擎驅動發電機的優點是可使用於電力供應的區域。
焊槍
手操作鎢極氬弧焊的焊槍必須堅實重量輕且完全絕緣,必須有手把供持壓且供輸送保護氣體至電弧區,且具有筒夾,夾頭或其他方式能穩固的壓緊鎢電極棒且導引焊接電流至電極棒上,焊槍組合一般包括各種不同的纜線,軟管和連線焊槍至電源,氣體和水的配合件,圖3表示典型的水冷式手操作焊槍保護氣體通過的整個系統必須氣密,軟管中式接頭處漏泄會使保護氣體大量損失,且熔池無法得到充分的保護,空氣吸入氣體系統中時常是主要的問題,需小心的維護以確保氣密的氣體系統。
鎢極氬弧焊的焊槍有不同的尺寸和種類,重量由輕到三英兩到幾乎一磅重,焊槍尺寸不同是依能使用的最大焊接電流而定,而且可配用不同尺寸的電極棒和不同種類和尺寸的噴嘴,電極棒與手把的角度也隨著不同的焊槍而變化,最普通的角度是約120°,但也是使用90°的頭角度焊槍直線焊槍,甚至可調整角度的焊槍,有些焊槍在其手把中裝置輔助開關和氣體閥。
鎢極氬弧焊的焊槍其主要的區分為氣冷式和水冷式。因為氣冷式大多數的冷卻是由氣保焊提供。故較正確的說法應為GAS—COOLED真正空氣冷卻僅是輻射散熱至周圍的空氣中,另一方面水冷式焊槍有些冷卻是由保護氣體提供,但是,其他則由循環透過焊槍的水補充冷卻。
氣冷式焊槍通常是重量輕的,體積小且堅實,且比水冷式焊槍較便宜,但是,一般受限使用於約125安培以下的焊接電流,正常情況下是使用於焊接薄板且使用率低之處,鎢電極棒的操作溫度比在水冷式焊槍中操作的較高,且因為如此,在使用純鎢電極棒時或在接近額定電流容量下焊接時,會引起鎢粒子脫落掉入熔池中。
水冷式焊槍是被設計用於持續的高電流焊接,能以高至200安培的焊接電流做持續的操作有些被設計可用於500安培的最大焊接電流,比氣冷式焊槍較重且較貴。
焊槍連線水管和有關的接頭,通常,由電焊機攜帶電流至電極棒的電纜線是包在水冷卻水的出口管路內,此可提供纜線的冷卻,且容許使用小直徑,重量輕可繞的導線,有時也包括配合件和流動開關和熔絲,焊槍中漏水或氣體系統含有濕氣,會污染焊道且會促使操作不順。
要求
1.對氣體的控制要求:要求氣體先來後走,氬氣是較易被擊穿的惰性氣體,先在工件與電極針間充滿氬氣,有利於起弧;焊接完成後,保持送氣,有助於防止工件迅速冷卻防止氧化,保證了良好的焊接效果。2.電流的手開關控制要求:要求按下手開關時,電流較氣延遲,手開關斷開(焊接結束後),根據要求延時供氣電流先斷。
3.高壓的產生與控制要求:氬弧焊機採用高壓起弧的方式,則要求起弧時有高壓,起弧後高壓消失。
4.干擾的防護要求:氬弧焊的起弧高壓中伴有高頻,其對整機電路產生嚴重的干擾,要求電路有很好的防干擾能力。
鎢電極選擇
釷鎢電極釷鎢電極是國外最常用的鎢電極。引弧容易,電弧燃燒穩定。但具有微量放射性,廣泛套用於直流電焊接。通常用於碳鋼、不鏽鋼、鎳合金和鈦金屬的直流焊接。
鈰鎢電極
鈰鎢電極是目前國內普遍採用的一種。電子發射能力較釷鎢高,是理想的取代釷鎢的非放射性材料。適用於直流電或交流電焊接,尤其在小電流下對有軌管道、細小精密零件的焊接效果最佳。
鑭鎢電極
鑭鎢電極中、大電流的直流電和交流電都適用。鑭鎢最接近釷鎢的導電性能,不需改變任何的焊接參數就能方便快捷的替代釷鎢,可發揮最大綜合使用效果。
鋯鎢電極
鋯鎢電極主要用於交流電焊接,在需要防止電極污染焊縫金屬的特殊條件下使用。在高負載電流下,表現依然良好。適用於鎂、鋁及其合金的交流焊接。
釔鎢電極
釔鎢電極在焊接時,弧束細長,壓縮程度大,在中、大電流時其熔深最大。可以進行塑性加工製成厚1mm的薄板和各種規格的棒材和線材。主要用於軍工和航空航天工業。[1]
母材金屬厚度編
鎢極氬弧焊能套用於廣泛厚度範圍的金屬焊接,此方式非常適合於焊接3mm厚以下物件,因為其電弧產生強烈的、集中熱量,而產生高焊接速度,使用熔填金屬能做多道焊接。雖然6.25mm以上的厚度的母材金屬,通常使用其他焊接方式。但是,需高品質的厚焊件有使用鎢極氬弧焊做多層焊接。例如在8m直徑的火箭發動器,15mm厚的外殼製造中,以鎢極氬弧焊使用填充金屬做縱向和圓周多道焊接,雖然對此厚的金屬而言,此焊接方式較慢,但因為焊道的高品質要求,故而使用TIG焊接。
鎢極氬弧焊可成功的焊接多種“箔厚度”的合金,薄板焊接需要精密的裝置固定,對於箔厚度的金屬。需使用機械或自動焊接,“高溫電離子電弧焊接”經常被記為是鎢極氬弧焊的一種變化,對於焊接薄板具有更多的優點。
工作物形狀
防止使用自動方法的複雜形狀處需使用手操作焊接。手操作是使用於需要短的焊道的不規則的形狀物件上焊接,或需要在難以達到的(不易接近的)區域的焊接,手操作也適合全姿勢焊接。自動設備能使用曲線的和直線的表面焊接。例如波狀鈦極兩端對組成件的特殊正弦波焊接,對於此正弦波式的焊接,設計一機械式的導向單元跟隨金屬模板以引導焊槍。例如此焊接的人工操作,其控制極端的困難。
TIG的基礎
因為在鎢極氬弧焊中,其熱量是在極棒和工作物之間產生,而將工作物邊緣熔化且當焊道熔池凝固時必須清潔,接合在一起。為了能以鎢極氬弧焊得到良好的品質的焊道,基本上必須將要焊接的所有表面和臨近的區域清潔乾淨,如果使用熔填金屬也必須清潔。
另一基本要求是要焊接的組成件的組合,必須牢固的保持在正確的相關的位置上,當組合方式是高要求,且工作物薄,形狀複雜。不使用熔填金屬焊接或使用自動焊接時,需使用的裝置具。
起弧
通常使用“起弧”的方法是引起電子發射和氣體離子化開始的方式;可經由能化的電極棒接觸工作物且快速抽回到其所需的電弧長度,或使用導弧,或使用在電極棒和工作物之間產生高頻火花的輔助裝置引弧,而得到此放射和離子的能量;電極棒從工作物上做機械式的抽回方式只能用於直流電焊機的機械化的焊接,然而,導弧起動方式,可用於手操作和機械化焊接,但是也只限於直流電焊機,高頻火花起弧方式可套用於交流或直流電焊機的手操作焊接,許多電焊機都有產生高頻火花的裝置作起弧和穩定電弧。
電極棒位置
在手操作鎢極氬弧焊中的電極棒和熔填金屬位置表示於圖1中,一旦引弧既保持焊槍使電極棒位於離工作物表面約75º角度處,且指向焊接的方向,開始焊接時,電弧通常以打圓圈的方式移動直到足夠的目材金屬熔化以生產適宜大小的熔池(見圖1a)。當達到適當的熔合時,將焊槍沿著焊接物接頭的相鄰邊緣逐漸的移動。如此漸漸的熔接工作物,當熔填金屬是以手操作添加時經常是保持在距工作物表面約15º的角度,且緩慢的進入熔池中(見圖1c),必須小心的送入熔填金屬以避免擾亂氣體保護或接觸電極棒,且因熔填條端部氧化或電極棒的污染。熔填金屬條可持續的加入或反覆的“侵入”與“抽出”。
熔填金屬能以保持熔填條與焊道成線狀排列的方式持續加入(時常使用以V形接頭的多焊道接中)或者以熔填條和焊槍左右擺動的方式將熔填條送入熔池(時常使用以表面加層的一種方式)。
停止焊接時,將熔填金屬從熔池中抽回,但暫時的保持在氣體保護下。以防止熔填金屬氧化,然後在熄弧之前移動焊槍至熔池的前方邊緣,將焊槍提升到剛好足以熄弧但又不足以引起熔坑和電極棒污染的高度而斷弧,最佳的操作是以腳踏控制方式逐漸的減少電流而不需提升焊槍。
電弧長度
在許多的全自動鎢極氬弧焊接套用中,使用的電弧長度約等於3/2倍的電極棒直徑,但可依特定的套用而變化,也可依焊工所喜用的選擇而定,然而,電弧長度越長,擴散到周圍大氣中的熱量越高,而且,長的電弧通常會妨礙(至某一程度)焊接的穩定進行,有一例外是在管路中之“插承接頭”,以官軸在垂直位置的焊接中,長的電弧可比短的電弧產生較平滑外形的填角焊接。
操作方式
在手工的和全自動的鎢極氬弧焊之間有一個區別,即是:手工焊接是以“焊工”做之,全自動焊接是以“操作者”做之;例如腳踏控制焊接電流和轉換開關的手工焊接的改良方式都是趨向自動焊接的初步發展;使用持握和帶動焊槍以定速或按照計畫的速度移動,且能自動調整電弧電壓(電弧長度),自動開關和停止之設備,既構成全自動焊接。
焊工技術
操作人員的選擇和訓練主要是取決於使用的設備之“自動程度”,因為鎢極氬弧焊是最經常使用於接合金屬片的配件,且因為在其套用中,焊工能很容易的處理相當輕小的組成件,故而焊工經常需花費其部分的時間作清潔,組合裝置固定和虛焊等操作處理,而且除了需要高度的手工技巧,耐心的訓練以得到良好品質的焊道以外,有時焊工具有機械的技術,將要焊的組合件作適當的組合和裝置固定。
特定焊接技術的需要會隨著由一種焊接方式改為另一種焊接方式而變化,例如一位精以手工操作氣保焊接的焊工,需外加訓練才能有資格做鎢極氬弧焊,另外,在某些套用中需特別的技術,例如消耗性背墊環的安置和焊接和修補焊接等。
檢驗
鎢極氬弧焊的檢驗包括所有的非破壞性方式,從金屬片形焊物的表面檢驗至較厚焊接物的放射線(X光)和超音波方式檢驗,以檢查表面以下(內部)較可能發生的缺陷。
焊接電流
在任何焊接操作的控制中“電流”是最重要的操作條件,因為其與滲透的深度,焊接速度,焊著速度和焊道的品質皆有關;基本上,有三種焊接電流可供選擇:(a)直流正極性,(b)直流反極性(c)交流(d)。在此三種電流上附加高頻電流,可得到某些所需的效應表1中列出各種不同的金屬焊接的電流型試選擇說明。直流負極性
為鎢極氬弧焊使用最廣泛的電流型式,幾乎所有的一般可焊接之金屬和合金中都能產生良好的焊道;在以dcsp(directcurrentstraightpolarity直流正接,等同於DCEN:directcurrentelectorenegative直流負極性)的焊接中,電極是負極,工作物金屬是正極,因此電子流是由電極流向工作物金屬。因為在所有直流電弧中70%的熱量是在電弧的正極或陽極端部產生,對於給予尺寸的電極棒,可承受正極性電流較多,而可承受的反極性電流較少,相同的,如果對於特定尺寸的電極棒,需要有最熱的電弧時,dcsp是必須使用的電流型式。
正接直流電流可產生深的窄的焊道,且“滲透”優於其他兩種電流所提供的,然而窄的焊道和較深的滲透使在此dcsp焊接薄金屬物時引起困難;與dcrp或ac不同的是:dcsp不能除移鋁、鎂或鈹銅上的表面氧化物,但是鋁若以dcsp焊接,需使用特殊化的焊接方式加上焊接前之機械的或化學的清潔
使用dcsp焊接比高頻穩定化交流電弧焊接時需要教多的技術,主要是因為dcsp在引弧時沒有高頻導引放電,因此可在標準的機器上加上特別的裝置而將高頻電流附加於dcsp上。
直流正極性
在於dcrp(directcurrentreversepolarity直流反接,等同於DCEP:directcurrentelectorepositive直流正極性)的焊接中,電極是連線電焊機正極端,且工作物金屬接負極端。因此電子流從工作物流向電極棒;而在電極中產生高熱量,在工作物中產生低熱量;在相同的安培和電弧長度下,dcrp電弧的電壓稍高dcsp電弧,因此dcrp電弧具有較多的總能量。
反接直流電是三種電流型式中最少使用的,因為其產生平坦的,寬的且滲透淺的焊道,以dcrp焊接,需要高的技術,因為以相同低的焊接電流值需使用大尺寸的電極棒。故而通常不使用,反極性直流電流具有“最冷的”有效電弧,但是能提供從工作物表面移氧化物之優越特性。
以dcrp焊接鋁是特別的困難,因為熔池很容易被吸引至電極棒的尖端,而電極棒與鋁接觸時受污染變體,然而dcrp可有效的使用於接合薄的鋁片(0.6mm),另一方面鎂受到dcrp固有的電弧作用所排棄且因而沒有污染問題,dcrp可使用於焊接厚至3mm的鎂金屬。
移除氧化物
有數種理論解釋為何反極性直流電流能從某些母材金屬表面移除氧化物的清潔作用但是,一般被接受的解釋如下:
當電極性為正極時,氬氣或氦氣的離子是向母材金屬表面進行,在環繞惰性氣體霧圈上,帶電的氣體陽離子產生通過電弧的作用,氣體離子具有相當的質量,且因而在向金屬表急行的同時,獲得大量的動能,當這些離子與金屬表面碰撞時,如有噴紗的方式,撕掉氧化物的粒子而清潔之,此粒子在金屬母材上產生熱量比在電弧陽極端產生的熱量較少,結果滲透的量較輕微,如果電極棒為負極且工作物為正極,則離子向電極棒行進而在工作物金屬上無清潔作用且電子“轟炸”欲焊接金屬,因此使工作物金屬產生相當的熱量和滲透。
例如不鏽鋼,碳鋼和銅的金屬,不會形成對鎢極氬弧焊明顯影響氧化層,
極性判斷
在自動鎢極氬弧焊中,會有以錯誤極性開始焊接操作的危險,這些因為重複操作使然,但是在手操作焊接中,只會偶然的被改變焊接機端頭的連線而顛倒極性,最好在開始焊接之前,先試驗極性,可避免電極性可能損壞(如果的反極性電流施加在小的電極棒上時,會發生損壞)。
使用手工焊條電弧焊接的手把線接於線路上,試驗極性,以反極性,全位置手工焊條電弧焊焊條起弧(E6010級),如果極性是正的、則電弧具強烈且有力的嘶嘶聲;真正反極性E6010的電弧不會具有力的劈啪聲。
交流電流
可說為一系列的dcsp和dcrp之互動脈動,且每秒鐘轉換電流方向120次,交流電中,每一周期之間,電壓由最大的正值變化至最大的負值,且每發生一次變化,電弧即熄減一次;在惰性中焊接時,傳統的電弧焊接變壓器無法產生高至足以在電弧熄滅減後確實的在建立電弧的電壓,相同的,除非使用具有足夠的固有電壓之變壓器,否則必須附加高頻電流於電弧上,以便在每半周期上能再建立焊接電弧。
交流電能提供良好的滲透,且使表面氧化物減少(或還原);ac的鎢極氬弧焊產生的焊道比dcsp焊道較寬且較淺,但是比dcrp焊道較窄且較深,且其焊道加強部比dcsp或dcrp的焊道加強部較大,因此交流電較適合鋁,鎂和鈹銅焊接。
整流預防
由於電壓的正和負半周期跨過交流電弧期間產生不等的電流阻力,而引起不平衡的電流正弦波,產生整流作用上升現象,因其在ac弧中會產生直流電壓部分,高至足以引起電弧飄動和不穩定。鎢極氬弧焊使用較老式的變壓器,較可能發生整流作用,因為沒有新式的平衡波形組件.
因為電極棒和焊接金屬放射不等量的電子而發生整流作用。其受到電極棒端和工作物端電弧的電流密度的影響(電流密度控制兩者的溫度),也受到電弧長度和使用的保護氣體至某一程度的影響,整流作用會產生高至12V的直流電壓部分在鋁的焊接中,當直流部分高時,熔融鋁的光亮熔池會變暗且產生氧化膜,其程度與直流部分之大小成正比。
可使用平衡波形變壓器消除整流作用和其有害的效應,此組件加入一電容器串聯於焊接電路中此電容器的電容量容許交流的焊接電流有效的流過,但阻止部分流通,這些組件通常被設計為具有100-150伏特範圍的開路電壓,需高頻電流起弧,且很廣泛的被使用於焊接鋁合金和鎂合金。
脈動電流焊接
脈動電流的鎢極氬弧焊,是以高的電流上升與衰退速率和高的重複脈動速率操作,很廣泛的使用精密配件的接合,具較緩慢的電流脈動速率之脈動電流是使用於機械化的管件焊接和其他的機械化焊接套用。
以發展出能容許自動精確控制脈動TIG的弧電壓的電路,這些電路使用的弧電壓是由高的脈動電流和在周期的殘部期間鎖住控制而產生,在修改形的脈動電流電焊機中,下列的函式也許是個別獨立開始部分
脈動電流的鎢極氬弧焊的優點如下:
1焊道的“深度對寬度”之比例增加:使用短持續時間的高電流焊接脈和小的、純的釷鎢電極棒,在不鏽鋼焊接中,發生的電弧力會產生2:1的深度對寬度比例之焊道。
2消除“墜陷”高電流,短持續時間脈即可“熔透”根部焊道或薄的工作物金屬且熔池變大至足以下墜之前凝固。
3熱影響區減至最小:經由高脈的高度和持續時間,與低脈的高度和持續時間的適當比例,可將熱影響區減至最小,有時設定低脈高度為零,同時保持高電流脈之間有限制的間隔。
4在熔池中攪拌:電流的高脈產生的電弧和電磁力比定電流焊接產生的大很多,這些高的力量產生熔池的攪動而減少,接頭底部可能發生的針孔和不完全熔合,脈動在使用於低電流焊接時產生堅實僵硬的電弧,消除低電流的定電流電弧會發生的電弧散漫不穩定現象。
電焊機
鎢極氬弧焊的電焊機有:(a)變壓器---整流器式,直流輸出。(b)變壓器式,交流輸出(c)動力驅動發電機----電力馬達驅動.(只供ac輸出),或引擎驅動(可供ac或dc輸出)。變壓器和整流器式電焊機具有數個優於動力驅動發電機式的優點:低的最初成本,暖機期間沒有電流降,操作安靜,保養和操作成本低,沒有轉動部分,停頓時功率輸入低,引擎驅動發電機的優點是可使用於電力供應的區域。
高頻穩定
將大花間隙式或管式震盪器接於焊接變壓器線路中,做起弧用,且在某些例子中,也可持續的使用,在大多數早期以高頻穩定的交流電做TIG焊接中,發生的“無線干擾”產生相當多的麻煩,然而,現今,震動式電驛,“電子管”制動電器和獨特相位的高頻變壓器供給火花供應較弱的放電,使“無線干擾”現象減少。
為改裝一些較老式的變壓器,裝設HF穩定的電路,作接觸起弧,也許會加入一磁動接觸器於交流電焊機中,以腳踏開關作動;使用此種裝設。焊工能將電極棒依靠工作物指向需要開始的位置下面罩,然後,接下腳踏開關,當電極棒由工作物上提升時即起弧,此程式較簡單,且當焊工欲停止焊接電流時,僅需釋放腳踏開關即可。
HF誘導放電需要的強度取決於接頭設計,電極棒伸出長度和焊工能以最小的HF誘導電流起弧之能力,如果在深的構槽接頭中作焊接,則HF電流強度必須較低,否則電弧會橋接構槽的寬度而不會進入接頭的根部。
過度的高頻穩定會有下列的不良效應:
1.操作人員受電震的可能性較大。
2.焊接電弧不穩定。
3.如果使用金屬噴嘴,會“遇電”至噴嘴。
4.降低焊接纜線的壽命,因為高頻會滲透絕緣。
5.增加無線接收干擾。
如果在焊接電流上附加高頻電路時,最重要的是在要裝入或調整電極棒之前,或是在將手放在或接近焊接頭的金屬部分之前,必須將電源關掉,否則會發生猛烈的電震,特別是在操作者接觸到近於工作物的溫氣時。
在以高頻穩定交流電焊接時,熄弧後電極棒仍然熱時,其尖端顯現紫色的暈,當電極棒冷卻時,紫色暈劇烈褪色,且當電極棒達到某一溫度時,既突然的消失,在紫暈乃可見時,電極棒接近工作物仍有相當大的距離即會引發電弧,故必須特別的小心,以避免不想要的位置突然的引發電弧和弧燃。
熱起動裝置
對於某些焊接,需提供布設聚增的電流(高於正常電流很多),以便能在最短的時間延遲下,開始焊接(起弧)此在自動或半自動焊接中特別的有幫助,在電路中連線熱起動裝置,提供開端(起弧)的聚增電流,通常此裝置能預先調整以供所需的外加電流大小和所需的時間幅度。
緩和電力
在以短持續時間的高電流值和經常起動的焊接時,可使用感應馬達橫跨(並聯)於連線焊接機的端子緩和線路上電力的聚增量,此馬達不具外部負荷,馬達的額定馬力必須超過電焊機的KVA額定,如此當因為在起弧中的短路使電流聚增而線電壓降時,在轉動電樞中會有足夠的動能轉換成大量的電力輸入線路中,線上電壓中的尖銳陡降會引起馬達轉慢,且在馬達中的轉動能量被轉換成電能,幫助保持線電壓上升,除非是用在起弧時,緊急的減緩線電壓降。否則在做此類裝設之前必須小心的作成本分析。
熔坑填充
在某些套用中,焊道終端需做均稱的收尾,且避免在焊道熔坑中的熄弧點上突然的凹陷,在鋁合金和鎂合金的焊接中,在正好收尾之前需開始減少焊接電流,然而,類如鎳基和鈷基合金對“鼓震”很敏感的金屬,除非以逐漸的減少電流的方式熄弧,並且助於熔填金屬的溫度焊著(此也可從熔池消減數量)否則必然會發生熔坑龜裂,為避免熄弧後在熔坑中產生“渴”或凹陷,焊道必須持續越過焊道終端,且必須逐漸減少電流至金屬不在熔化的電流值,否則當電弧停止作動時,在工作物中會形成凹處或弧形疤痕,此類疤痕和也許存在的顯微的龜裂會增加腐蝕的感受性。
有數種方法可使各種電焊機能逐漸減少電流:(a)在馬達發電機上用控制法;(b)(c)在整流器上用可變電抗器控制法;(d)在控制變壓器的可動線圈和可飽和的電抗器上使用馬達或空氣驅動的圓筒隔離一次和二次線圈。
操作規程
1,在詳細閱讀設備說明書及經過相應的培訓後方可使用該設備,在使用該設備之前必須獲得設備管理人員同意.2,在使用前先觀察冷卻水系統內有無冷卻水,必須保證有足夠的冷卻水,觀察電路,氣路,水路是否按照要求接好.
3,氬弧焊有較高的紫外線強度及採用較高空載電壓的電源,在使用焊機時必須穿戴好工作服,帽及手套,應做好個人防護,避免弧光,燒傷或烤傷.
4,合上總電源開關,首先啟動冷卻水,然後打開氬氣鋼瓶閥門,調節閥門,保持氬氣有一定流量,再開啟焊機電源.
5,根據不同焊接樣品採用相應的焊接規範進行焊接,在焊接時保證室內空氣流通.
6,焊接完以後先關閉焊機電源,然後關閉氣瓶閥門,再關閉冷卻水,最後關閉總電源.
搖擺滾動焊接
搖擺滾動焊接方法:1)根據坡口的大小、焊接材料選擇焊槍的磁嘴尺寸,磁嘴是搖擺滾動的支撐點;
2)高頻引弧後用電弧預熱點焊,通過操作者的手腕不斷擺動磁嘴,磁嘴緊貼所述坡口表面,沿著焊縫中心從左側滾動到右側,左右擺動向前運動,衰減電流直至熔池收縮後滅弧。
有害因素
氬弧焊的有害因素氬弧焊影響人體的有害因素有三方面:
(1)放射性釷鎢極中的釷是放射性元素,但鎢極氬弧焊時釷鎢極的放射劑量很小,在允許範圍之內,危害不大。如果放射性氣體或微粒進入人體做為內放射源,則會嚴重影響身體健康。
(2)高頻電磁場採用高頻引弧時,產生的高頻電磁場強度在60~110V/m之間,超過參考衛生標準(20V/m)數倍。但由於時間很短,對人體影響不大。如果頻繁起弧,或者把高頻振盪器做為穩弧裝置在焊接過程中持續使用,則高頻電磁場可成為有害因素之一。
(3)有害氣體——臭氧和氮氧化物氬弧焊時,弧柱溫度高。紫外線輻射強度遠大於一般電弧焊,因此在焊接過程中會產生大量的臭氧和氧氮化物;尤其臭氧其濃度遠遠超出參考衛生標準。如不採取有效通風措施,這些氣體對人體健康影響很大,是氬弧焊最主要的有害因素。
安全防護措施
(1)通風措施氬弧焊工作現場要有良好的通風裝置,以排出有害氣體及煙塵。除廠房通風外,可在焊接工作量大,焊機集中的地方,安裝幾台軸流風機向外排風。
此外,還可採用局部通風的措施將電弧周圍的有害氣體抽走,例如採用明弧排煙罩、排煙焊槍、輕便小風機等。
(2)防護射線措施儘可能採用放射劑量極低的鈰鎢極。釷鎢極和鈰鎢極加工時,應採用密封式或抽風式砂輪磨削,操作者應配戴口罩、手套等個人防護用品,加工後要洗淨手臉。釷鎢極和鈰鎢極應放在鋁盒內保存。
(3)防護高頻的措施為了防備和削弱高頻電磁場的影響,採取的措施有:
1)工件良好接地,焊槍電纜和地線要用金屬編織線禁止;
2)適當降低頻率;
3)儘量不要使用高頻振盪器做為穩弧裝置,減小高頻電作用時間。
4)其它個人防護措施氬弧焊時,由於臭氧和紫外線作用強烈,宜穿戴非棉布工作服(如耐酸呢、柞絲綢等)。在容器內焊接又不能採用局部通風的情況下,可以採用送風式頭盔、送風口罩或防毒口罩等個人防護措施。