對數留數
![輻角原理](/img/7/7a8/wZwpmL3UzM0MTN4gjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL4YzLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![輻角原理](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
積分 的值稱為複變函數 的對數留數。
![輻角原理](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設C是一條閉曲線,若 符合條件:
![輻角原理](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![輻角原理](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
1) 在C內部除可能的極點外解析,即 為亞純函式;
![輻角原理](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
2) 在C上解析且不為零,則有
![輻角原理](/img/3/ded/wZwpmLxQDOwcTNzYzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2czL0czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![輻角原理](/img/2/eb0/wZwpmLxADMwgjM0gzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL4czLzUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![輻角原理](/img/7/38e/wZwpmLwETM3MTN2YDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2QzL0gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![輻角原理](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
其中 與 分別表示 在C的內部的零點和極點的個數(一個n級零點算作n個零點,而一個m級極點算作m個極點)。
定義
![輻角原理](/img/7/3cb/wZwpmLwQDM4IDO5EzNwYjN1UTM1QDN5MjM5ADMwAjMwUzLxczLwIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![輻角原理](/img/a/23c/wZwpmL4ITN1QDM1QDM3UzM1UTM1QDN5MjM5ADMwAjMwUzL0AzLyQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![輻角原理](/img/3/2b5/wZwpmLzUjN0MzMzEzN4MTN0UTMyITNykTO0EDMwAjMwUzLxczLxUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
設複變函數 ,當複平面Z上的z點沿閉曲線C的正向(逆時針)繞行一周時(如右圖a),複平面W上的 點就相應地畫出一條連續閉曲線Γ(如右圖b)。
根據複變函數對數的定義,有
![輻角原理](/img/2/793/wZwpmL0IDMyMzM1kTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL5UzLwAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
由右圖以及上式可歸納出:
![輻角原理](/img/3/2b5/wZwpmLzUjN0MzMzEzN4MTN0UTMyITNykTO0EDMwAjMwUzLxczLxUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![輻角原理](/img/f/9d1/wZwpmL2UTN4MDO3IjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLyYzL2QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
1)當Γ是一條包含原點的簡單閉曲線時, 點沿Γ繞行一周,上式右端第1項的量沒有變化,而第2項的量改變了 (逆時針繞行取正,順時針取負);
2)當Γ曲線內不包含原點時,上式右端兩項的改變數均為零。
![輻角原理](/img/0/2d9/wZwpmL3ITM2kDM0kTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL5UzLxIzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![輻角原理](/img/f/38a/wZwpmL4ADMyYTN2MjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLzYzL2MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設C是一條閉曲線,定義 為z沿著曲線C的正向繞行一周后 的改變數。
由此可得輻角原理如下:
![輻角原理](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![輻角原理](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設D是閉曲線C所圍成的區域,若(1) 在D內除可能的極點外解析,即為亞純函式;(2) 在C上解析且不為零,則
![輻角原理](/img/6/99e/wZwpmL1QjM3ITMxITNwYjN1UTM1QDN5MjM5ADMwAjMwUzLyUzL1YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
證明
由牛頓-萊布尼茨公式可知:
![輻角原理](/img/f/2a2/wZwpmL3UDOycDOwkTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL5UzL1IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![輻角原理](/img/3/6ed/wZwpmL4QjNzIzNwYDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzL0gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![輻角原理](/img/3/ded/wZwpmLxQDOwcTNzYzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2czL0czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
再由
可知
![輻角原理](/img/6/99e/wZwpmL1QjM3ITMxITNwYjN1UTM1QDN5MjM5ADMwAjMwUzLyUzL1YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
得證。
套用
1)用於求解複變函數的零點或極點個數
![輻角原理](/img/1/809/wZwpmLzITMycDO0MDOwYjN1UTM1QDN5MjM5ADMwAjMwUzLzgzL4czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
2)用於求解方程的根的個數
3)在自動控制中,作為奈奎斯特穩定判據的理論基礎(奈奎斯特穩定判據用於分析單變數系統的穩定性)