英文名稱:radiationhardening。由於金屬在強射線條件下產生空位或填隙原子,這時缺陷阻礙位錯運動,從而產生強化效應。
類型
輻照表面發生的細晶強化、加工硬化和相變強化。
過程
為了說明形變強化的物理實質,必須了解在形變過程中位錯的產生、分布和運動與流變強度的關係。階段Ⅰ的強化可以認為是通過形成位錯偶使大量位錯受到羈絆而阻滯,但是偶中正負號位錯的長程應力場在很大程度上互相抵銷,因而位錯偶只提供很小的阻止位錯運動的應力場,導致階段Ⅰ的強化效應微弱。階段Ⅱ的強化模型很多,如位錯塞積群長程應力強化模型(1952),位錯林強化模型(1959),位錯割階強化模型(1960),網眼長度強化模型(1962),流變應力統計強化模型(1966)以及高位錯密度區強化模型(1967)等等,每一種模型都解釋一部分實驗現象,但也存在不少問題。其中以西格(A.See-ger)根據莫特(F.Mott)所提出的位錯塞積群長程應力強化模型比較經典,可得出流變強度與位錯密度的線性關係式,同時推算的Image:308-05.gif和實驗結果也比較符合。形變強化的第Ⅲ階段應力-應變曲線呈拋物線形,亦即強化效應逐漸下降,這是因為在高形變數下出現大量交滑移及異號位錯兼併的緣故。由於應力的提高,有些位錯可能繞過障礙前進,這些都減少強化效應。也就是說,在階段Ⅲ有動態回復出現。在多晶金屬的加工硬化過程中,階段Ⅱ強化起決定性作用。為了保持多晶體塑性變性的連續性和協調性,每個晶粒發生變形時,必須有五個以上的滑移系統同時開動;所以,在多晶體里實際上不存在象單晶那樣的階段Ⅰ單系滑移和強化。
總之,形變強化決定於位錯運動受阻,因而強化效應與位錯類型、數目、分布、固溶體的晶型、合金化情況、晶粒度和取向及沉澱顆粒大小、數量和分布等有關。溫度和受力狀態有時也是決定性的因素。
一般來說,退火單晶的位錯密度為106cm-2,變形量很大的金屬可在1012cm-2以上。層錯能低的金屬比層錯能高的金屬加工硬化更為顯著。細晶粒、有澱澱相、高速形變和低溫形變都表現出較高的形變強化效應。
沉澱強化與彌散強化過飽和固溶體隨溫度下降或在長時間保溫過程中(時效)發生脫溶分解。時效過程往往是很複雜的,如鋁合金在時效過程中先產生GP區,繼而析出過渡相(θ"及θ'),最後形成熱力學穩定的平衡相(θ)。細小的沉澱物分散於基體之中,阻礙著位錯運動而產生強化作用,這就是“沉澱強化”或“時效強化”。為了提高金屬,特別是粉末冶金材料的強度,往往人為地加入一些堅硬的細質點,彌散於基體中,稱為彌散強化。從彌散質點引起強化這一點來說,沉澱強化與彌散強化並沒有大區別。但是,前一情況是內生的沉澱相,後一情況為外加質點;而且,在時效前期,沉澱相和基體之間往往保持共格或半共格關係,在每個細小沉澱物附近存在著一個較大範圍的應力場(圖2),與位錯發生互動作用,產生十分顯著的強化作用。如果時效溫度提高或時間延長,則出現非共格產物,強化效應下降,以致於合金強度降低,稱為“過時效”;最後產生平衡相。因為沉澱引起合金元素的貧化,此時合金材料的強度甚至低於固溶體狀態。彌散強化時,外加的質點在高溫使用過程中也會聚集、長大以減少顆粒的表面能,同樣會引起軟化。