荊燕飛

荊燕飛:男,電子科技大學研究員。2005/9 - 2010/12,電子科技大學,套用數學,博士,導師:黃廷祝。2001/9 - 2005/7,電子科技大學,數學與套用數學,學士。

論文及專著發表

(Publications)

[1] Yan-Fei Jing*, Pei Yuan, Ting-Zhu Huang, A simpler GMRES and its adaptive variant for shifted linear systems, Numerical Linear Algebra with Applications, 2017, 24(1), DOI: 10.1002/nla.2076.

[2]Emmanuel Agullo, Luc Giraud, and Yan-Fei Jing*. Block GMRES method with inexact breakdowns and deflated restarting. SIAM Journal on Matrix Analysis and Applications, 2014, 35(4): 1625-1651.

[3]Dong-Lin Sun, Yan-Fei Jing*, Ting-Zhu Huang, and Bruno Carpentieri. A quasi–minimal residual variant of the BiCORSTAB method for nonsymmetric linear systems. Computers and Mathematics with Applications, 2014, 67(10): 1743-1755.

[4]Yan-Fei Jing*, Ting-Zhu Huang, Yong Duan, and Bruno Carpentieri. A comparative study of iterative solutions to linear systems arising in quantum mechanics. Journal of Computational Physics, 2010, 229(22): 8511-8520.

[5] Yan-Fei Jing*, Ting-Zhu Huang, Yong Duan, Sheng-Jian Lai, and Jin Huang. A novel integration method for weak singularity arising in two-dimensional scattering problems. IEEE Transactions on Antennas and Propagation, 2010, 58(8): 2725-2731.

[6] Yan-Fei Jing*, Ting-Zhu Huang, Yong Zhang, Liang Li, Guang-Hui Cheng, Zhi-Gang Ren, Yong Duan, Tomohiro Sogabe, and Bruno Carpentieri. Lanczos-type variants of COCR method for complex nonsymmetric linear systems. Journal of Computational Physics, 2009, 228(17): 6376-6394.

[7] Yan-Fei Jing*, Ting-Zhu Huang, Bruno Carpentieri, and Yong Duan. Exploiting the composite step strategy to the Biconjugate A-orthogonal Residual method for non-Hermitian linear systems. Journal of Applied Mathematics, 2013, Article ID 408167, 16 pages.

[8] Yan-Fei Jing*, Ting-Zhu Huang, Bruno Carpentieri, and Yong Duan. Investigating the composite step biconjugate A-orthogonal residual method for non-Hermitian dense linear systems in Electromagnetics. Applied Computational Electromagnetics Society Journal, 2012, 27(2):112–122.

[9] Yan-Fei Jing, Bruno Carpentieri*, and Ting-Zhu Huang. Experiments with Lanczos Biconjugate A-Orthonormalization methods for MOM discretizations of Maxwell’s equations. Progress In Electromagnetics Research, 2009, 99: 427-451.

[10] Yan-Fei Jing* and Ting-Zhu Huang. Restarted weighted full orthogonalization method for shifted linear systems. Computers and Mathematics with Applications, 2009, 57(9): 1583-1591.

[11] Yan-Fei Jing* and Ting-Zhu Huang. On a new iterative method for solving linear systems and comparison results. Journal of Computational and Applied Mathematics, 2008, 220(1-2): 74-84.

[12] Bruno Carpentieri*, Yan-Fei Jing, and Ting-Zhu Huang. The BiCOR and CORS algorithms for solving nonsymmetric linear systems. SIAM Journal on Scientific Computing, 2011, 33(5): 3020–3036.

[13] Liang Li*, Ting-Zhu Huang, Yan-Fei Jing, and Zhi-Gang Ren. Effective preconditioning through minimum degree ordering interleaved with incomplete factorization. Journal of Computational and Applied Mathematics, 2015, 279(1): 225-232.

[14] Liang Zhao, Ting-Zhu Huang*, Yan-Fei Jing, and Liang-Jian Deng, A generalized product-type BiCOR method and its application in signal deconvolution, Computers and Mathematics with Applications, 2013, 66(8): 1372-1388.

[15] Liang Li*, Ting-Zhu Huang, Guang-Hui Cheng, Yan-Fei Jing, Zhi-Gang Ren, and Hou-Biao Li. Solution to 3-D electromagnetic problems discretized by a hybrid FEM/MOM method. Computer Physics Communications, 2013, 184: 73-78.

[16] Guang-Hui Cheng*, Ting-Zhu Huang, Yan-Fei Jing, and Xi Rao. Block ILU preconditioners for block-tridiagonal systems, Japan Journal of Industrial and Applied Mathematics, 2013, 30(2): 453-464.

[17] Bruno Carpentieri*, Yan-Fei Jing, Ting-Zhu Huang, Wei-Cao Pi, and Xin-Qing Sheng. Combining the CORS and BiCORSTAB iterative methods with MLFMA and SAI preconditioning for solving large linear systems in Electromagnetics. Applied Computational Electromagnetics Society Journal, 2012, 27(2):102–111.

[18] Yong Zhang*, Ting-Zhu Huang, Yan-Fei Jing, and Liang Li. Flexible incomplete Cholesky factorization with multi-parameters to control the number of nonzero elements in preconditioners. Numerical Linear Algebra with Applications, 2012, 19(3): 555-569.

[19] Xi-Le Zhao*, Ting-Zhu Huang, Shi-Liang Wu, and Yan-Fei Jing. DCT- and DST- based splitting methods for Toeplitz systems. International Journal of Computer Mathematics, 2012, DOI:10.1080/00207160.2011.649264: 1-10.

[20] Jin-Song Leng*, Ting-Zhu Huang, Yan-Fei Jing, and Wei Jiang. A study on conjugate quadrature filters. EURASIP Journal on Advances in Signal Processing, 2011, Article ID 231754, 7 pages, doi: 10.1155/2011/231754.

[21] Bruno Carpentieri*, Yan-Fei Jing, and Ting-Zhu Huang. A novel Lanczos-type procedure for computing eigenelements of Maxwell and Helmholtz problems. Progress In Electromagnetics Research, 110, 2010: 81-101.

[22] Liang Li*, Ting-Zhu Huang, Yan-Fei Jing and Yong Zhang. Application of the incomplete Cholesky factorization preconditioned Krylov subspace method to the vector finite element method for 3-D electromagnetic scattering problems. Computer Physics Communications, 2010, 181(2): 271-276.

[23] Shu-Qian Shen, Ting-Zhu Huang* and Yan-Fei Jing. On inclusion and exclusion intervals for the real eigenvalues of real matrices. SIAM Journal on Matrix Analysis and Applications, 2009, 31(2): 816-830.

[24] Guang-Hui Cheng*, Ting-Zhu Huang, Yan-Fei Jing, and Li-Tao Zhang. Convergence behaviors of multisplitting methods with K+1 relaxed parameters. Journal of Computational and Applied Mathematics, 2009, 229(1): 61-69.

[25] Jing Meng*, Hou-Biao Li, Yan-Fei Jing. A new deflated block GCROT(m, k) method for the solution of linear systems with multiple right-hand sides. Journal of Computational and Applied Mathematics; 2016, 300:155-171

[26] Bruno Carpentieri, Yan-Fei Jing, Ting-Zhu Huang, Yong Duan. A class of linear solvers built on the Biconjugate A-Orthonormalization Procedure for solving unsymmetric linear systems, arXiv:1004.1622v1 [math.NA], 2010.

[27] Yan-Fei Jing, Ting-Zhu Huang, Bruno Carpentieri, and Yong Duan. Investigating the composite step biconjugate A-orthogonal residual method for non-Hermitian linear systems in electromagnetics, 2011 Computational Electromagnetics International Workshop, CEM’11,, art. no. 6047335: 80-84.

[28] Yan-Fei Jing, Bruno Carpentieri, and Ting-Zhu Huang. BiCOR and CORS: two fast convergent and economical iterative algorithms for solving nonsymmetric linear systems. The 2nd IMA Conference on Numerical Linear Algebra and Optimisation, University of Birmingham, 13-15 September, 2010.

[29] Yan-Fei Jing and Ting-Zhu Huang. Characterization of the inverses of tridiagonal matrices. Proceedings of the Seventh International Conference on Matrix Theory and Its Applications in China, 2006, 402-405.

[30] Yan-Fei Jing, Ting-Zhu Huang, Yong Duan, and Bruno Carpentieri. Preliminary study on iterative solutions to two-dimensional elliptic scattering problems. In Proceedings of the 6th Workshop on Matrices and Operators, Chengdu,China, July 8-11, pp. 406-409, 2011.

[31] Bruno Carpentieri, M. Bollhoefer, Yan-Fei Jing, Ting-Zhu Huang, Wei-Cao Pi, and Xin-Qing Sheng. Preconditioned Krylov subspace methods for solving high-frequencydeep cavity problems in electromagnetics. In Proceedings of the ICCAM 2012, International Congresson Computational and Applied Mathematics, July 9th-13th, Ghent, Belgium. 2012.

[32] Bruno Carpentieri, Yan-Fei Jing, Ting-Zhu Huang, and Yong Duan. A stable variant of the Biconjugate A-Orthogonal Residualmethod for non-Hermitian linear systems. In Proceedings of the 2012 SIAM Conference on Applied LinearAlgebra, June 18th-22nd, Valencia, Spain. 2012.

[33] Bruno Carpentieri, Yan-Fei Jing, Ting-Zhu Huang, Wei-Cao Pi, and Xin-Qing Sheng. A novel family of iterative solvers for method of moments discretizations of Maxwell’s equations, Computational Electromagnetics International Workshop, CEM'11, 2011, art. no. 6047335: 85-90.

[34] Bruno Carpentieri, Yan-Fei Jing, and Ting-Zhu Huang. Lanczos biconjugate A-orthonormalization methods for surface integral equations in electromagnetism. PIERS Online, 2010, 6(4): 335-339.

[35] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Yan-Fei Jing, Stojce Nakov, Jean Roman. On a hierarchical parallel algebraic domain decomposition linear solver. Aquitaine-Euskadi Workshop on Applied Mathematics Bilbao, 2012, June 6-7.

研究項目

(Projects)

1. 國家自然科學基金青年基金項目,11201055、基於電磁散射的多右端向量線性方程組的塊Krylov子空間方法、2013/01-2015/12、主持。

2. 高等學校博士學科點專項科研基金項目,20120185120026、塊Krylov子空間方法及在電磁散射計算中的套用、2013/01-2015/12、主持。

3. 中央高校基本科研業務費專項資金,ZYGX2011X018、基於電磁散射的大規模線性代數方程組疊代法與預條件技術研究、2011/07-2014/06、主持。

4. 國家自然科學基金數學天元基金項目,11126103、Krylov子空間方法及在電磁散射計算中的套用、2012/01-2012/12、主持。

5. 電子科技大學科研啟動費項目,Y02002011001032、計算電磁學中線性方程組疊代法與預條件技術研究、2010/12-2013/12、主持。

6. 國家自然科學基金面上項目,60973015、不定線性方程組和鞍點系統的算法與求解器及套用研究、2010/01-2012/12、參加。

7. 優秀博士學位論文培育基金項目,A01002011001001、線性方程組疊代法與預條件技術及在電磁散射計算中的套用、2009/03-2010/10、主持。

8. 國家973計畫前期研究專項課題,2008CB317110、電磁散射計算的高效算法研究及在隱身技術中的套用、2008/01-2009/12、參加。

9. 國家自然科學基金面上項目,10771030、電磁計算中大規模線性代數方程組的預條件技術與高效算法、2008/01-2009/12、參加。

10. 教育部科學技術研究重點項目,107098、大規模稀疏線性系統的高性能疊代解法、2007/01-2009/12、參加。

講授課程

(Courses)

1. 本科生課程(Undergraduate Courses): 《線性代數與空間解析幾何》(<Linea Algebra and Spacial Analytic Geometry>) 《數學實驗》(<Mathematical Experiments>) 《專業教育與學習規劃》(<Major Education and Study Planning>) 《數學建模》(<Mathematical Modeling >) 《數據科學中的數學》(<Mathematics in Data Science>) 《套用數學中的某些前沿問題》(<Advanced Problems in Applied Mathematics>) 2. 留學生課程(Overseas Students Courses) 《矩陣理論》(< Matrix Theory >) 《數值代數》(< Numerical Algebra >)

.

相關詞條

熱門詞條

聯絡我們