細胞骨架

細胞骨架

細胞骨架(cytoskeleton)是真核細胞中由蛋白質聚合而成的三維的纖維狀網架體系。細胞骨架包括微絲、微管和中間纖維。細胞骨架在細胞分裂、細胞生長、細胞物質運輸、細胞壁合成等等許多生命活動中都具有非常重要的作用。

概述

細胞骨架細胞骨架

細胞骨架(cytoskeleton)是指真核細胞中的蛋白纖維網路結構。發現較晚,主要是因為一般電鏡制樣採用低溫(0-4℃)固定,而細胞骨架會在低溫下解聚。直到20世紀60年代後,採用戊二醛常溫固定,才逐漸認識到細胞骨架的客觀存在。真核細胞藉以維持其基本形態的重要結構,被形象地稱為細胞骨架,它通常也被認為是廣義上細胞器的一種。細胞骨架不僅在維持細胞形態,承受外力、保持細胞內部結構的有序性方面起重要作用,而且還參與許多重要的生命活動,如:在細胞分裂中細胞骨架牽引染色體分離,在細胞物質運輸中,各類小泡和細胞器可沿著細胞骨架定向轉運;在肌肉細胞中,細胞骨架和它的結合蛋白組成動力系統;在白細胞(白血球)的遷移、精子的遊動、神經細胞軸突和樹突的伸展等方面都與細胞骨架有關。另外,在植物細胞中細胞骨架指導細胞壁的合成。

細胞骨架由微絲(microfilament)、微管(microtubule)和中間纖維(intemediatefilament)構成。微絲確定細胞表面特徵,使細胞能夠運動和收縮。微管確定膜性細胞器(membrane-enclosedorganelle)的位置和作為膜泡運輸的導軌。中間纖維使細胞具有張力和抗剪下力。

微絲、微管和中間纖維位於細胞質中,又稱胞質骨架,它們均由單體蛋白以較弱的非共價鍵結合在一起,構成纖維型多聚體,很容易進行組裝和去組裝,這正是實現其功能所必需的特點。

廣義的細胞骨架還包括核骨架(nucleoskeleton)、核纖層(nuclearlamina)和細胞外基質(extracellularmatrix),形成貫穿於細胞核、細胞質、細胞外的一體化網路結構。

微管

細胞骨架細胞骨架

微管可在所有哺乳類動物細胞中存在,除了紅細胞(紅血球)外,所有微管均由約55kD的α及β微管蛋白(tubulin)組成。它們正常時以β二聚體形式存在,並以頭尾相連的方式聚合,形成微管蛋白原纖維(protofilament),一般由13根這樣的原纖維構成一個中空的微管,直徑22~25nm。少數變異的微管如線蟲等所有的則有其他數目的原纖維。微管確定膜性細胞器(membrane-enclosedorganelle)的位置和作為膜泡運輸的導軌。微管是細胞骨架的架構主幹,並也是某些胞器的主體,例如中心粒(centriole)就是由9組3聯微管組成的構造,而真核生物的纖毛(cilium)與鞭毛(flagellum)也是由以微管為9+2結構,即由9個二聯微管和一對中央微管構成,其中二聯微管由AB兩個管組成,A管由13條原纖維組成,B管由10條原纖維組成,兩者共享5條。

細胞骨架的主要功能細胞骨架的主要功能

A管對著相鄰的B管伸出兩條動力蛋白臂,並向鞭毛中央發出一條輻。基體的微管組成為9+0,並且二聯微管為三聯微管所取代,結構類似於中心粒。組成的軸絲(axoneme)為主體。從各種組織中提純微管蛋白可以發現還存在一些其他蛋白成分(5%-20%),稱之謂微管相關蛋白(microtubeassociatedproteinsMAPs)。這些蛋白具有組織特異性,表現出從相同αβ二聚體聚合形成的微管具有獨特的性質,已從人類不同組織中發現了多種α及β微管蛋白,並追蹤微管基因表現出部分基因家族,某些基因被認為是編碼獨特的微管蛋白。微管形成的有些結構是比較穩定的,是由於微管結合蛋白的作用和酶修飾的原因。如神經細胞軸突、纖毛和鞭中的微管纖維。大多數微管纖維處於動態的聚合和災變(一種突然的,迅速的,一般不可逆轉的分解)狀態,這是實現其功能所必需的性質(如紡錘體)。

與秋水仙素(colchicine)結合的微管蛋白可加合到微管上,並阻止其他微管蛋白單體繼續添加,進而破壞紡錘體的結構,長春花鹼具有類似的功能。紫杉酚(taxol),能促進微管的聚合,並使已形成的微管穩定,然而這種穩定性會破壞微管的正常功能。這些藥物可以利用破壞微管功能以阻止細胞分裂,成為癌症治療的新希望。在人類至少發現兩種明顯區別的α-微管蛋白及三種明顯區別的β-微管基因,它們產生具有特定功能的微管蛋白mRNA,由於這些編碼在結構組分上十分近似蛋白質分子,在不同組織存在多少特異性的具有差異表達的微管蛋白亞型,尚待深入研究。除了α-與β-微管蛋白有編碼相似的不同變異型,近幾年來又發現了多種編碼差異更大的新的微管蛋白,形成不同的基因家族。

其中gamma微管蛋白位於細胞內的微管組織中心(microtubuleorganizingcenter,MTOC),是用以提供α及β微管蛋白進行聚合反應形成微管的起始核心。而delta與epsilon則被認為與中心體(centrosome)的結構與形成有關。其他尚有eta,zeta,theta等等多種變異,不過通常僅存在少數幾種真核單細胞生物如原蟲或纖毛蟲里,可能跟這些生物獨特的結構與生理習性有關,進一步詳情仍待研究

微絲

細胞骨架細胞骨架
微絲(microfilament)也普遍存在於所有真核細胞中,是一個實心狀的纖維,一般細胞中含量約占細胞內總蛋白質的1%-2%,但在活動較強的細胞中可占20%-30%。在一般細胞主要分布於細胞的表面,直接影響細胞的形狀。微絲具有多種功能,在不同細胞的表現不同,在肌細胞組成粗肌絲、細肌絲,可以收縮(收縮蛋白),在非肌細胞中主要起支撐作用、非肌性運動和信息傳導作用。微絲主要由肌動蛋白(actin)構成,和肌球蛋白(myosin,一種‎‎‎分子馬達蛋白)一起作用,使細胞運動。它們參與細胞的變形蟲運動、植物細胞的細胞質流動與肌肉細胞的收縮:植物細胞的細胞質流動:微絲中的actin(肌動蛋白)與myosin(肌球蛋白)在細胞質形成三維的網路體系。actin位於外質,myosin位於內質。myosin連結著細胞質顆粒,由ATP供給能量,myosin與細胞質顆粒的結合體沿著actinfilament滑動,從而帶動整個細胞質的環流。變形蟲運動(amoeboidmovememt,阿米巴運動):肌肉細胞的收縮:如同微管蛋白,肌動蛋白的基因組成一個超家族,並組成多種極為相似的結構。例如,各種肌肉細胞有不同的機動蛋白:①骨骼肌的條紋纖維;②心肌的條紋纖維;③血管壁的平滑肌;④胃腸道壁的平滑肌。它們在胺基酸組分上有微小的差異(大約在400個胺基酸殘基序列中有4-6個變異),在肌肉與非肌細胞中都還存在β及γ肌動蛋白,它們與具有橫紋的α肌動蛋白可有25個胺基酸的差異。G-肌動蛋白單體(含ATP)可聚合為呈纖維狀的F-肌動蛋白(含ADP),它們可由Mg2+及高濃度的K+或Na+誘導而聚合,聚合後ATP水解為ADP及C-肌動蛋白ADP單體,組成F-肌動蛋白。在骨骼肌的細肌絲(thinfilament,由肌動蛋白構成)與粗肌絲(thickfilament,由肌球蛋白構成)相互作用而使肌肉收縮(肌球蛋白可以起作肌動蛋白激活的ATPase的作用)。肌球蛋白也存在於哺乳動物的非肌細胞中(但以非聚合狀態存在)。

中間纖維

細胞骨架細胞骨架

細胞骨架的第三種纖維結構稱中等纖維或中間纖維(intermediatefilament,IF),又稱中間絲,為中空的骨狀結構,直徑介於微管和微絲之間,其化學組成比較複雜,在不同細胞中,成分變化較大。中間纖維使細胞具有張力和抗剪下力。中間纖維有共同的基本結構,即構建成一個中央α螺鏇桿狀區,

兩側則是大小和化學組成不同的端區。端區的多樣性決定了中間纖維外形和性質的差異和特異性。以上這些結構單元並非是一成不變的,而是隨細胞的生命活動而呈現高度的動態性,它們均由單體蛋白以較弱的非共價鍵結合在一起,構成纖維型多聚體,很容易進行組裝和去組裝,這正是實現其功能所必需的特點

其他蛋白

細胞骨架細胞骨架

不僅如此,細胞骨架還包含有很多結構單元的附屬蛋白質,比如:分子馬達(molecularmotors):動力蛋白(dynein),kinesin,myosin結合蛋白:vinculin,cofilin,tropomyosin等等。

廣義的細胞骨架還包括核骨架(nucleoskeleton)、核纖層(nuclearlamina)和細胞外基質(extracellularmatrix),形成貫穿於細胞核、細胞質、細胞外的一體化網路結構。

相關詞條

相關搜尋

熱門詞條

聯絡我們