無粘性不可壓縮流體動力學
正文
流體動力學中主要研究無粘性不可壓縮流體在繞過物體時的流動和管內流動規律的一個分支,又稱經典流體動力學。這一學科分支的任務是求解流場中的速度、壓力分布和物體受力。它忽略了真實流體的粘性和壓縮性,也不考慮表面張力,從而大大簡化了複雜的流體動力學問題,故常作為近似處理許多工程問題的依據。速度勢方程 許多無粘性不可壓縮流體的流動,如來流均勻或流體從靜止開始的流動,均為無旋流動。無旋流動時存在速度勢嗞,相應的速度勢方程為:




柯西積分 歐拉方程在重力場中無旋流動條件下的線積分。它可敘述為:同一時刻流場中任意兩點上的值


流函式 不可壓縮流體平面流動時存在流函式






行動網路圖 流場中等 嗞線與等











參考書目
V. L. Streeter, Fluid Mechanics, 5th ed.,McGraw-Hill,New York,1971.