命名
![朗伯W函式兩個分支的圖像](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
朗伯W函式(Lambert W Function)由約翰·海因里希·朗伯(Johann HeinrichLambert)命名。在Digital Library of Mathematical Functions(儲存特殊函式的數學運用的一個網路項目)中主分支
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
被表示為
![朗伯W函式](/img/a/4fa/wZwpmLyEzNwcTOyYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL3UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/4/203/wZwpmLxcTO1kDNwYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
,分支 被表示為 。
微分與積分
微分
![朗伯W函式](/img/2/1e4/wZwpmL2ADO4kTO5gjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLyEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
滿足微分方程
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
所以
![朗伯W函式](/img/d/ce4/wZwpmL4YTN1ADM3kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czL1IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
此外,我們有
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
積分
![朗伯W函式](/img/5/4d0/wZwpmL2gTO3QTO4IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLwMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/5/4d0/wZwpmL2gTO3QTO4IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLwMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/4/ab7/wZwpmLyAjN1YTM3ETN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxUzLxMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/1/072/wZwpmL3YDNwYjM3ETN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxUzL0IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
函式 或一些包含 的表達式可運用代換 進行積分。( )
![朗伯W函式](/img/4/0b5/wZwpmL4cTO0YzN1gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL3EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
特殊的有
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
漸近展開式
![朗伯W函式](/img/5/4d0/wZwpmL2gTO3QTO4IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLwMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
函式 有泰勒展開式
![朗伯W函式](/img/b/aa4/wZwpmLzEDM3gjN5MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLxczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![朗伯W函式](/img/6/455/wZwpmLycjM3czM1EDNxMDN0UTMyITNykTO0EDMwAjMwUzLxQzLwczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
收斂半徑為 。
![朗伯W函式](/img/1/036/wZwpmL3QzM5YjNzMjM0EDN0UTMyITNykTO0EDMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/5/e42/wZwpmLxYjM1UDMyMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzL1MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
對於大的數 , 有漸近展開式
![朗伯W函式](/img/e/a2a/wZwpmLxMTN5IjN3UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzLyUzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
和
![朗伯W函式](/img/3/45e/wZwpmLzgDO2IDN0MjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzLyAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![朗伯W函式](/img/6/d7b/wZwpmLzIjM1UzN0IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLzIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![朗伯W函式](/img/5/7fe/wZwpmLzEDNyATMzkzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLxIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![朗伯W函式](/img/5/434/wZwpmL1gTMzczMyMDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzLwAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
其中 , , 是非負的第一類斯特靈數(Stirling number of the first kind)。
在展開式中只留前兩項
![朗伯W函式](/img/6/18a/wZwpmLyQTO0czNwcTO0YzM1UTM1QDN5MjM5ADMwAjMwUzL3kzL0YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/a/4fa/wZwpmLyEzNwcTOyYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL3UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/2/a78/wZwpmL4YDM5ITN3EzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLxMzLyEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/e/f3b/wZwpmLzQjNwMjN2EDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLxgzL4UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![朗伯W函式](/img/f/ca9/wZwpmLzUjM5IzN1gzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4czLyMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
另一分支 ,當 時有相似的漸進展開式, , 。
複數次方
![朗伯W函式](/img/5/e42/wZwpmLxYjM1UDMyMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzL1MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
的平方有泰勒公式
![朗伯W函式](/img/3/45d/wZwpmLyQTOwMzM1IzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL2czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![朗伯W函式](/img/4/10f/wZwpmL2IzNxgjN0MDOwADN0UTMyITNykTO0EDMwAjMwUzLzgzLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
更一般的情況下,當 是整數,有
![朗伯W函式](/img/f/6bf/wZwpmL4cDM1EjNygTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL4EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/7/969/wZwpmL0cjM3QjN4ADO0YzM1UTM1QDN5MjM5ADMwAjMwUzLwgzLxEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![朗伯W函式](/img/4/10f/wZwpmL2IzNxgjN0MDOwADN0UTMyITNykTO0EDMwAjMwUzLzgzLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
的 次方有泰勒公式
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/4/10f/wZwpmL2IzNxgjN0MDOwADN0UTMyITNykTO0EDMwAjMwUzLzgzLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/7/28b/wZwpmLzITO5MzN2kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLyUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
其中 是任意複數,
恆等式
用朗伯W函式的定義,我們有
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/f/68d/wZwpmL1gDNxczMzYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![朗伯W函式](/img/d/9fe/wZwpmL0EzM1AzN3YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL0UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/5/707/wZwpmLwUTN4EDMxMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzL4EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![朗伯W函式](/img/1/bf4/wZwpmLzIjMygDN0YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzLzAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![朗伯W函式](/img/8/052/wZwpmLyEDN1cTNzIjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL2czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/9/01d/wZwpmLzMjMxcTO4gjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL2czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![朗伯W函式](/img/6/5ac/wZwpmL1UjM3gTMxIDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL3MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/d/c6f/wZwpmL3UzNxcTN2IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL0QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
特殊值
![朗伯W函式](/img/1/036/wZwpmL3QzM5YjNzMjM0EDN0UTMyITNykTO0EDMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/5/4d0/wZwpmL2gTO3QTO4IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLwMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/5/4d0/wZwpmL2gTO3QTO4IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLwMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/2/cf0/wZwpmLyMTO3kDN5QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/2/dcf/wZwpmLwADO0YTMyETN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxUzLxMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
當 為一非0的代數數時, 為超越數。如果 為非0的代數數,運用林德曼-魏爾斯特拉斯定理(Lindemann–Weierstrass theorem) , 一定是超越的,因此 也是超越數。
![朗伯W函式](/img/8/bd6/wZwpmLyIDO1UzNzUjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/b/40c/wZwpmLzcDO2kjNyQzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL0MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![朗伯W函式](/img/b/e28/wZwpmL0ITM0cjM3EDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLxgzLzMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/4/ed0/wZwpmL1IDM0QDM3ITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzLyQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![朗伯W函式](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
其中 為歐米加常數(Omega constant) 。
![朗伯W函式](/img/b/bec/wZwpmLycTN3ETNyMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzL4AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/d/396/wZwpmLxcjMwEDN0UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzL3UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/0/01e/wZwpmLzYjM1MTM2QDO0YzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLxMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
舉例介紹
![朗伯W函式](/img/9/755/wZwpmL4IDOxITNwkDO0ATN0UTMyITNykTO0EDMwAjMwUzL5gzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![朗伯W函式](/img/5/6f9/wZwpmL1czM3UzN2kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czL1MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/8/828/wZwpmLyEzNyITNwUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzL1YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
朗伯W函式可以解許多包含指數函式 的方程。其中主要的方法是把所有未知數移向一邊,令方程變成 形式,解出 。
例子1
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
更一般的
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/0/a05/wZwpmL0cDN1MTN5ATN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwUzL4QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
其中 ,可以使用代換
![朗伯W函式](/img/a/10b/wZwpmLzgTMyADM1gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL0QzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![朗伯W函式](/img/4/470/wZwpmLyQTN0UzNwkzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czL0MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
解出
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
因此最後答案為
![朗伯W函式](/img/5/e35/wZwpmL2ETO1YzNwMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzL1AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/9/980/wZwpmL2UTOyUTM4AzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwczL3czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
如果 ,方程有第二個解
![朗伯W函式](/img/8/717/wZwpmL4IDO5QTN0IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL0UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
例子2
![朗伯W函式](/img/0/ec2/wZwpmL1QzM0cDM2IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/6/55e/wZwpmLzYzM0YTMzUzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1czL1YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/a/384/wZwpmLzMzMxEzM5QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/d/439/wZwpmLygTM3MTNykzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![朗伯W函式](/img/2/0cc/wZwpmLyIzM4ITM1ADO0YzM1UTM1QDN5MjM5ADMwAjMwUzLwgzLxMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
或
![朗伯W函式](/img/b/714/wZwpmL1AjM1MjN3QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czLyMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
因為根據定義,有
![朗伯W函式](/img/e/f56/wZwpmL1QDO5EDMyMTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLyMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
例子3
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
關於超-4運算(tetration,另見超運算)的方程
![朗伯W函式](/img/5/1c8/wZwpmLzQjN1ETM4ADMwADN0UTMyITNykTO0EDMwAjMwUzLwAzL3czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
如果超運算收斂至一個數 ,則
![朗伯W函式](/img/5/d38/wZwpmL2cTMzQDM1IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLyAzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
解出
![朗伯W函式](/img/4/d9b/wZwpmL2YzM2IzN1QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLyMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
例子4
![朗伯W函式](/img/8/5c3/wZwpmL0cTM5kzM2gzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4czLwAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
的解為
![朗伯W函式](/img/7/619/wZwpmL4IjM4cDNxkTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzL2MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
例子5
延遲微分方程(delay differential equation)
![朗伯W函式](/img/f/6cd/wZwpmLzQDNxkzM3MDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL3QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![朗伯W函式](/img/1/4d5/wZwpmL3gzMyMTOyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
的特徵方程為
解出
![朗伯W函式](/img/2/551/wZwpmLxUTM0IDO3UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzLwAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![朗伯W函式](/img/7/79d/wZwpmLyMDO1UDMxQzMxADN0UTMyITNykTO0EDMwAjMwUzL0MzL2QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/a/42b/wZwpmL0QDNycDM4MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzL0QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/2/721/wZwpmLwAjN5EzN3MjN2UzM1UTM1QDN5MjM5ADMwAjMwUzLzYzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
其中 為朗伯W函式的分支。如果 ,則只用考慮其主分支 。
數值估算
![朗伯W函式](/img/d/b88/wZwpmLxgDM5UTOzYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![朗伯W函式](/img/6/077/wZwpmL0QzNwEDN0AzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwczL4YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
朗伯W函式可以用牛頓疊代法(Newton's method)求其近似值 使 。
![朗伯W函式](/img/5/4b7/wZwpmL1gjM4EDO3cjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3YzLwQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
函式亦可以使用哈雷疊代法(Halley's method)求近似值。
![朗伯W函式](/img/1/d30/wZwpmLwcTN1MTMxkjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLxQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)