最優二叉樹

2.樹的帶權路徑長度(Weighted 樹的帶權路徑長度(Weighted 樹的帶權路徑長度亦稱為樹的代價。

1.樹的路徑長度
樹的路徑長度是從樹根到樹中每一結點的路徑長度之和。在結點數目相同的二叉樹中,完全二叉樹的路徑長度最短。
2.樹的帶權路徑長度(Weighted Path Length of Tree,簡記為wpl)
結點的權:在一些套用中,賦予樹中結點的一個有某種意義的實數。
結點的帶權路徑長度:結點到樹根之間的路徑長度與該結點上權的乘積。
樹的帶權路徑長度(Weighted Path Length of Tree):定義為樹中所有葉結點的帶權路徑長度之和,通常記為:
其中:
n表示葉子結點的數目
wi和li分別表示葉結點ki的權值和根到結點ki之間的路徑長度。
樹的帶權路徑長度亦稱為樹的代價。
3.最優二叉樹或哈夫曼樹
在權為wl,w2,…,wn的n個葉子所構成的所有二叉樹中,帶權路徑長度最小(即代價最小)的二叉樹稱為最優二叉樹或哈夫曼樹。
【例】給定4個葉子結點a,b,c和d,分別帶權7,5,2和4。構造如下圖所示的三棵二叉樹(還有許多棵),它們的帶權路徑長度分別為:
(a)WPL=7*2+5*2+2*2+4*2=36
(b)WPL=7*3+5*3+2*1+4*2=46
(c)WPL=7*1+5*2+2*3+4*3=35
其中(c)樹的WPL最小,可以驗證,它就是哈夫曼樹。
注意:
① 葉子上的權值均相同時,完全二叉樹一定是最優二叉樹,否則完全二叉樹不一定是最優二叉樹。
② 最優二叉樹中,權越大的葉子離根越近。
③ 最優二叉樹的形態不唯一,WPL最小

相關詞條

相關搜尋

熱門詞條

聯絡我們