EXAR模型結構及特點
EXAR模型源於二階非線性隨機振動微分方程
![指數自回歸模型](/img/a/44c/wZwpmLxMzN0YDOwAjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLwIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/3/741/wZwpmL2IjM0gTO1gTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4EzL0IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![指數自回歸模型](/img/3/895/wZwpmLyAzNwUTO5QTMwEDN0UTMyITNykTO0EDMwAjMwUzL0EzL2gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![指數自回歸模型](/img/9/d82/wZwpmL0YDM2MzMwITM3QTN1UTM1QDN5MjM5ADMwAjMwUzLyEzL1EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/c/5f4/wZwpmL1ADN5ITMxADN3QTN1UTM1QDN5MjM5ADMwAjMwUzLwQzL0IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/7/970/wZwpmLzUjN5cjM4kzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL5MzLyIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/7/8d4/wZwpmL2cjN0ATN4EzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLxMzLzUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/6/3ce/wZwpmLxcDM1kTNyczM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3MzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/7/8d4/wZwpmL2cjN0ATN4EzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLxMzLzUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/c/a26/wZwpmL3ETOygTO1gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
式中, 表示對時間 的二階導數 元表示對時間t的一階導數;“阻尼力” 和“恢復力" 是非線性函式; 為獨立白噪聲。當 是線性函式時,則式(1)為二階線性微分方程。當 為白噪聲時,輸出 含有的周期隨振幅變化,即所謂的“頻幅相依”。尾崎根據上述效應提出了二階指數自回歸模型:
![指數自回歸模型](/img/3/986/wZwpmL3UzN2UDO1kDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL5AzLyMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/a/d0c/wZwpmL3ITNyEzN5EjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxIzLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/a/138/wZwpmL1QTM0YjM5UTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL1EzL3IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
式中 分別依賴於 這種依賴關係為指數函式形式:
![指數自回歸模型](/img/0/22a/wZwpmL3UTN1AjN1YjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2IzLwEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
推而廣之,m階EXAR模型的結構為:
![指數自回歸模型](/img/d/49b/wZwpmL1QjNyETNwYDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2AzL4EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/1/f25/wZwpmLxgTNzUzM1ATM3QTN1UTM1QDN5MjM5ADMwAjMwUzLwEzLyAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![指數自回歸模型](/img/5/0b3/wZwpmL2gDO3YTN3ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLyQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
式中 和 為模型參數。
EXAR模型的特點
EXAR模型的特點:
![指數自回歸模型](/img/7/132/wZwpmL0gzN4UzNyAzM3QTN1UTM1QDN5MjM5ADMwAjMwUzLwMzLzAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/8/4a1/wZwpmL0EDM4ATO1IzM3QTN1UTM1QDN5MjM5ADMwAjMwUzLyMzLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/c/a26/wZwpmL3ETOygTO1gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/1/f84/wZwpmL3YDOyQTO4YjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2IzL2YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
①能刻畫非線性特性。模型參數 是隨時間變化的,其值取決於 同時又刻畫了 與 之間呈指數形式的非線性關係。
![指數自回歸模型](/img/7/132/wZwpmL0gzN4UzNyAzM3QTN1UTM1QDN5MjM5ADMwAjMwUzLwMzLzAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/1/f84/wZwpmL3YDOyQTO4YjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2IzL2YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/f/78b/wZwpmL4EzM4kDO3kjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL5IzLwEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/2/5b1/wZwpmL1UzM4EzN5ETM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/1/f84/wZwpmL3YDOyQTO4YjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2IzL2YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/f/78b/wZwpmL4EzM4kDO3kjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL5IzLwEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/f/048/wZwpmLxYDO0kzM5YjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2IzLyEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/1/f84/wZwpmL3YDOyQTO4YjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2IzL2YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
②能產生突躍現象。從 中可看出,當 很大時 趨近於 而當 很小時 近似等於 其間變化關係是連續的。當 從最大值到最小值時就產生突躍現象。
EXAR模型參數估計
在非線性時間序列分析中,參數辨識的方法主要有最小二乘法、極大似然法等。哈根基於最小二乘法給出了EXAR模型的參數辨識方法:
![指數自回歸模型](/img/5/0b3/wZwpmL2gDO3YTN3ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLyQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/c/a26/wZwpmL3ETOygTO1gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/c/dce/wZwpmL2IDOyQjN1gjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4IzLwQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/9/336/wZwpmL1MDM2cDN1cTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL3kzL0YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/8/5b9/wZwpmLzQTM2kDNxIzN4YDN1UTM1QDN5MjM5ADMwAjMwUzLyczLwEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(1) 先固定值,按最小二乘法作對的歸分析,估計和。用AIC確定模型階數m。
![指數自回歸模型](/img/5/0b3/wZwpmL2gDO3YTN3ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLyQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/5/0b3/wZwpmL2gDO3YTN3ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLyQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(2) 在一定範圍內取不同值,重複第(1)步的做法,得到不同值對應的參數和AIC值。
(3) 選擇AIC最小對應的模型參數即為所求。
上述參數辨識方法是可行的,但計算量大,且不一定能找到最優點,因而不是一種較好的方法。為此,提出了參數辨識的AGA,它包括如下兩個步驟:
![指數自回歸模型](/img/6/49a/wZwpmLwADNzEzM0QjN2UzM1UTM1QDN5MjM5ADMwAjMwUzL0YzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![指數自回歸模型](/img/8/885/wZwpmLzIjM2EzM1czM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3MzLzEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![指數自回歸模型](/img/6/188/wZwpmL0EjM2ETO5QDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![指數自回歸模型](/img/6/188/wZwpmL0EjM2ETO5QDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
第一步: 用自相關分析技術確定EXAR模型的自回歸項。時間序列延遲k步的自相關係數的方差隨k的增大而增大,的估計精度隨k的增加而降低,因此k應取較小的數值。
![指數自回歸模型](/img/6/188/wZwpmL0EjM2ETO5QDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![指數自回歸模型](/img/6/129/wZwpmL1gzN4cTOxgjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/6/49a/wZwpmLwADNzEzM0QjN2UzM1UTM1QDN5MjM5ADMwAjMwUzL0YzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![指數自回歸模型](/img/d/179/wZwpmL4gDM3MzNxEjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxIzL4czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![指數自回歸模型](/img/d/179/wZwpmL4gDM3MzNxEjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxIzL4czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
根據的抽樣分布理論,在置信水平的情況下,推斷與之間的相依性是否顯著。EXAR模型的自回歸項應與這些相依性顯著的項相對應,其中相依性顯著的最大延遲步數即為模型的階數m。
第二步:用AGA直接在相對殘差平方和最小化下同時最佳化模型各參數,即求如下最小化問題:
![指數自回歸模型](/img/2/fe6/wZwpmL3ITNwADM4gzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4MzLwczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![指數自回歸模型](/img/1/048/wZwpmLxQDM1QjN2cDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3AzL3AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
式中,為擬合值 。