基本介紹
常係數微分運算元是係數為常數的線性偏微分運算元,其一般形式為:
![常係數微分運算元](/img/6/584/wZwpmLzMzN2ATM4kTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL5UzLzczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/b/7c7/wZwpmLyYDMxMTO4EjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLxYzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
其中 為常數(實數或複數)。例如,拉普拉斯運算元
![常係數微分運算元](/img/3/564/wZwpmL1ADOyQjNzQjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0YzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/8/4c4/wZwpmL1UjM4YzNzQzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0czLxMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/d/ed6/wZwpmL4MTOyITN3IDOwYjN1UTM1QDN5MjM5ADMwAjMwUzLygzLxUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
熱運算元 ,波運算元 等都是常係數微分運算元。線性偏微分運算元理論中的若干重要問題,如基本解的存在性、局部可解性、亞橢圓性的判定等對於常係數情形均已完全解決 。
基本解的存在性定理
![常係數微分運算元](/img/a/03d/wZwpmL0UTOzEzM2UTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1UzL3AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/a/03d/wZwpmL0UTOzEzM2UTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1UzL3AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/1/a02/wZwpmLwgDO1MjMwQjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0YzLyUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
基本解的存在性定理(theorem for existence offundamental solution)是關於基本解存在性的一個定理。該定理斷言:每個非零的常係數微分運算元 都有基本解, 的基本解E作為廣義函式可如下構造: ,
![常係數微分運算元](/img/0/fb9/wZwpmL4cjN1kDM0ATNwYjN1UTM1QDN5MjM5ADMwAjMwUzLwUzL2YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/2/695/wZwpmLzMjMwQzM2YzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2czLxIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![常係數微分運算元](/img/c/fc2/wZwpmL0ATMygzM4YzMwEDN0UTMyITNykTO0EDMwAjMwUzL2MzLzczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/0/e09/wZwpmLwMjN4ADO1cjMzATN1UTM1QDN5MjM5ADMwAjMwUzL3IzL4czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/2/71f/wZwpmLwIzNxAjM0cDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL3gzL3czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
其中 表示 的逆傅立葉變換。H為 中某個適當的區域,滿足 ,由基本解的存在可知常係數微分運算元是局部可解運算元。
亞橢圓常係數微分運算元
![常係數微分運算元](/img/a/03d/wZwpmL0UTOzEzM2UTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1UzL3AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/a/03d/wZwpmL0UTOzEzM2UTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1UzL3AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
亞橢圓常係數微分運算元(hypoelliptic differential operator with constant coefficients)是最基本的亞橢圓運算元,設 是常係數微分運算元,則下述條件中的每一個都是 為亞橢圓運算元的充分必要條件:
![常係數微分運算元](/img/8/b42/wZwpmL4czM0gzN4EDOwYjN1UTM1QDN5MjM5ADMwAjMwUzLxgzL2MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/a/b49/wZwpmLxcDOwcjN4ADO0YzM1UTM1QDN5MjM5ADMwAjMwUzLwgzLyAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![常係數微分運算元](/img/3/28a/wZwpmLzATMyYzNwETNwYjN1UTM1QDN5MjM5ADMwAjMwUzLxUzL0YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/d/832/wZwpmL4gDM4kDM1YzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2czLxIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/6/7ea/wZwpmL1gDM0MDNxgDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL4QzLxUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
1.以 記 集合 的距離,則當 時, 。
![常係數微分運算元](/img/a/b49/wZwpmLxcDOwcjN4ADO0YzM1UTM1QDN5MjM5ADMwAjMwUzLwgzLyAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![常係數微分運算元](/img/0/42c/wZwpmL3ADN0kTMwUjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1YzLwczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/a/576/wZwpmLxIzNwYDO1kzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL5czL3EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
2.存在正的常數c及C,當 且 充分大時,不等式 成立。
![常係數微分運算元](/img/1/9c9/wZwpmL4gTM0YTN5QTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0UzLyQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/0/92c/wZwpmL3AzM1UzMyEDMyADN0UTMyITNykTO0EDMwAjMwUzLxAzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/a/b49/wZwpmLxcDOwcjN4ADO0YzM1UTM1QDN5MjM5ADMwAjMwUzLwgzLyAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![常係數微分運算元](/img/d/832/wZwpmL4gDM4kDM1YzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2czLxIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/3/767/wZwpmLwIjM2kjMyYDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzLyAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
3.記 ,對於每個非零多重指標 ,當 且 時,有 。
![常係數微分運算元](/img/a/b49/wZwpmLxcDOwcjN4ADO0YzM1UTM1QDN5MjM5ADMwAjMwUzLwgzLyAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![常係數微分運算元](/img/0/42c/wZwpmL3ADN0kTMwUjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1YzLwczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/e/22f/wZwpmL2UjM4UjN3QjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0YzL2EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
4.存在正的常數c及C,當 且 充分大時,不等式 成立 。
施瓦茲定理
![常係數微分運算元](/img/8/778/wZwpmL2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/5/b84/wZwpmL4cTO0kjM5EzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLxczLyczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/8/7ad/wZwpmLyczM3gjN1MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/8/7ad/wZwpmLyczM3gjN1MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/0/92c/wZwpmL3AzM1UzMyEDMyADN0UTMyITNykTO0EDMwAjMwUzLxAzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/d/956/wZwpmL4EjNzIzN2cDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL3gzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/4/742/wZwpmLxgDO0YDN1UzM2EzM1UTM1QDN5MjM5ADMwAjMwUzL1MzLzczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
施瓦茲定理[Schwarz(th.de)]設 為 的開集 上的連續可微的數值函式,且在 的點 處兩次可微,則對 的任一相異元素偶 ,必有
![常係數微分運算元](/img/d/6ed/wZwpmL4UjM5MzM4gzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL4czLzUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/8/7ad/wZwpmLyczM3gjN1MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/a/a7d/wZwpmL3YDO1UDN2EjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLxYzLyIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
這個定理表明,在 上無限可微的全體函式之向量空間 的全體自同態之代數中,所有自同態
![常係數微分運算元](/img/f/638/wZwpmL2QTOxEjNyMzNwYjN1UTM1QDN5MjM5ADMwAjMwUzLzczL2MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
兩兩可交換。因此,由這些自同態生成的酉子代數是交換的;它的元素是常係數微分運算元 。
定強微分運算元
![常係數微分運算元](/img/2/8fe/wZwpmL2ADNwMzM3QjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0YzLxAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/d/78a/wZwpmLyQTO4kzNwIjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLyYzLwEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![常係數微分運算元](/img/3/e99/wZwpmLycjM2MzMxATNwYjN1UTM1QDN5MjM5ADMwAjMwUzLwUzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/a/03f/wZwpmLzUjN2gTN2YDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2QzLwUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
對 定義的微分運算元稱為在中 具定強,若對任意固定的,常係數微分運算元及是等強的,即
![常係數微分運算元](/img/7/f15/wZwpmL1MzN0AzNwgjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL4YzLxczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
下面的引理把這個條件改成通常更方便的形式。
![常係數微分運算元](/img/3/e99/wZwpmLycjM2MzMxATNwYjN1UTM1QDN5MjM5ADMwAjMwUzLwUzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/b/71a/wZwpmL2gjMyITM2gTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL2czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/2/056/wZwpmLwQDNyUTN5QTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL2AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/2/73c/wZwpmL0AjN4gzNxcDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL3gzLwQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/9/400/wZwpmLycjN3MjNwAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczL1czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
引理1 設具定強,對固定的令並設是弱於的常係數運算元的有限維向量空間的基底,則有
![常係數微分運算元](/img/0/00a/wZwpmLyIDN3ITNzYzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2czL1UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/a/285/wZwpmLzQDMwgDMwETN0MTN1UTM1QDN5MjM5ADMwAjMwUzLxUzLzAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![常係數微分運算元](/img/b/71a/wZwpmL2gjMyITM2gTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL2czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![常係數微分運算元](/img/3/e99/wZwpmLycjM2MzMxATNwYjN1UTM1QDN5MjM5ADMwAjMwUzLwUzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
這裡係數唯一確定,在為0且有與的係數相同的可微性及連續性質 。