對稱操作
當分子有對稱中心時,從分子中任意一原子至對稱中心連一直線,將次線延長,必可在和對稱中心等距離的另一側找到另一相同原子,即每一點都關於中心對稱。依據對稱中心進行的對稱操作為反演操作,是按照對稱中心反演,記為i;n為偶數時in=E,n為奇數時in=i
鏡面對稱
鏡面是平分分子的平面,在分子中除位於經面上的原子外,其他成對地排在鏡面兩側,它們通過反映操作可以復原。反映操作是每一點都關於鏡面對稱,記為σ;n為偶數時σn=E,n為奇數時σn=σ。和主軸垂直的鏡面以σh表示;通過主軸的鏡面以σv表示;通過主軸,平分副軸夾角的鏡面以σd 表示。
反軸
反軸In的基本操作為繞軸轉360°/n,接著按軸上的中心點進行反演,它是C1n和i相繼進行的聯合操作:I1n=iC1n; 繞In軸轉360°/n,接著按中心反演。
映軸
映軸Sn的基本操作為繞軸轉360°/n,接著按垂直於軸的平面進行反映,是C1n和σ相繼進行的聯合操作: S1n=σC1n;繞Sn軸轉360°/n,接著按垂直於軸的平面反映。