大氣潮汐
由月球的引力作用,以及太陽的引力,熱力作用或其他天體對大氣的引力[1]所引起的大氣壓的周期性漲落現象。
正文
分析地面上大氣潮汐的氣壓觀測資料發現,氣壓變化可以分解成周期為8、12和24小時等調和分量,其中半日周期的調和分量最為顯著。由太陽引起的大氣潮汐稱太陽潮,其氣壓變化的半日周期分量最有規律性,而且得到很仔細的研究。太陽潮的振幅在赤道附近最大(約1.2百帕),逐漸向兩極減小;極區的振幅最小,且比較均勻(約0.1百帕);在中緯度地帶,其經向梯度最大。令人驚異的事實是:在高緯地區,不同經度的氣壓極值出現在同一世界時;而在中緯度和低緯度地區,這些極值出現在同一地方時。由月球引起的大氣潮汐稱太陰潮,其氣壓變化的半日周期分量的振幅比太陽潮同一分量的振幅至少小一個數量級。太陰潮在赤道約為0.08百帕,在緯度30°處約為0.02百帕。要分析這樣小的振幅,必須套用更精細的統計方法。1687年I.牛頓在他的《自然哲學的數學原理》一書中首先解釋了海洋潮汐現象,同時指出:引潮力同樣會影響大氣,就象它影響海洋一樣。因此,大氣潮汐的概念可以說是牛頓第一個提出來的。由於月球離地球近,太陽離地球遠,月球引潮力和太陽引潮力的比為11∶5,因此對海洋而言,太陰潮比太陽潮顯著。當時令人費解的是,為什麼在大氣里覺察不到太陰潮。1799~1830年,P.-S.拉普拉斯對潮汐現象進行了大量研究。他首先建立了海洋和大氣潮汐的動力理論,並且認為大氣中的氣壓半日振盪,不是由於潮汐力,而是由於太陽的熱力作用所引起的。但他未能說明為什麼會出現這種半日振盪比全日振盪強許多倍的現象。1882年,開爾文從氣壓變化的諧譜分析出發,提出了共振理論。他認為在大氣的自由振盪中,可能有一個比較接近於12小時的振盪周期。由於共振,溫度的半日振盪被放大,使它的氣壓反應比周期為24小時的更為強烈。因此,雖然周期為半日的引潮力很小,但由於熱力作用所激發的半日周期氣壓分波,卻遠較全日分波為大。隨後,J.W.S.瑞利研究了大氣的自由振盪周期,發現大氣有周期為23.8小時和13.7小時的兩種振盪,因而無法證明開爾文的共振理論。後來,H.蘭姆、S.查普曼和G.I.泰勒對大氣振盪問題作了詳細的討論,求得相應的自由振盪周期是10.5小時。1937年,C.L.皮克利斯採用五層大氣模式,證明了大氣中有周期為10.5小時和12小時的自由振盪。現代的潮汐理論,不是從開爾文的單純溫度共振出發,而是建立在同時考慮大氣動力和熱力因子的較複雜的流體力學方程組基礎上的理論,它包括了太陽熱力的重要影響,故稱為現代動力理論。它可以解釋太陽和太陰半日周期的氣壓振盪,以及太陽半日周期分量大於其全日周期分量的事實。
許多研究結果指出,大氣潮汐不僅在氣壓場上有反映,而且在大氣風場、地球磁場等方面也有反映。在對流層、平流層、中層和電離層中都有大氣潮汐現象,而且在高層和高緯度地區分別比低層和低緯度地區更加明顯。
參考書目
趙九章等編著:《高空大氣物理學》,上冊,科學出版社,北京,1965。
S.Chapman,R.S.Lindzen,atmospheric Tides,D.Reidel,Publ.,Dordrecht-Holland,1970.
M. Siebert, Atmospheric Tides, Advances in geophysics,Vol.7,Academic Press,New York,1961.