基本介紹
![共軛因式](/img/a/f5c/wZwpmLxcDN0MzN2YDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![共軛因式](/img/f/fb8/wZwpmL3YDN0MzN3YDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzLzQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![共軛因式](/img/4/077/wZwpmL3YjNzQTN1kzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL5czLxAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
共軛因式亦稱有理化因式、有理化因子,指乘積為有理式的兩個無理式。若兩個含有根式的代數式S與M的乘積SM是有理式,則它們互稱共軛因式。例如,式子 (a>0,b>0)的共軛因式是 ,因為 。一個式子的共軛因式乘以一個有理式仍是這個式子的共軛因式,所以,一個式子的共軛因式不是惟一的 。
求共軛因式的方法
常用的求共軛因式的方法如下 :
![共軛因式](/img/5/cc6/wZwpmLwEDOwcDN5UDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL1gzLxUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![共軛因式](/img/c/f7f/wZwpmL0gjMwUTOwQzNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0czLwMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
1.對於 ,可取 作為共軛因式。
![共軛因式](/img/8/99b/wZwpmL2UDMygTM4EDOwYjN1UTM1QDN5MjM5ADMwAjMwUzLxgzL0QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
2.對於 ,可取
![共軛因式](/img/0/698/wZwpmLxATNxkDO0MzNwYjN1UTM1QDN5MjM5ADMwAjMwUzLzczL2AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
作為共軛因式。
![共軛因式](/img/a/f47/wZwpmLwADM3IzM2cDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL3gzL4YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
3.對於 ,可取
![共軛因式](/img/7/020/wZwpmLyYTM5QjN0IDOwYjN1UTM1QDN5MjM5ADMwAjMwUzLygzL1YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
作為共軛因式。
4.有時對共軛因式的尋求要逐步完成 。
例如對於
![共軛因式](/img/b/3e7/wZwpmLxcDN3QTM3YDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzL2gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
則應取
![共軛因式](/img/6/2a1/wZwpmL2ADOzUjN0EjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLxYzL4UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
可得
![共軛因式](/img/a/69c/wZwpmLwUDM5IDM1IjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLyYzL0EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
可再取
![共軛因式](/img/a/ff8/wZwpmL2EDO1QDN0YDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzL1MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛因式](/img/b/c83/wZwpmLzEjM2cDOzcDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL3QzLwQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
於是 的共軛因式為
![共軛因式](/img/0/155/wZwpmLwMjM1AzN5QjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL0YzLxEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
5.待定係數法。
![共軛因式](/img/3/992/wZwpmLyUjN3gDO0YDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2QzL0czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
例如,求 的共軛因式,可取
![共軛因式](/img/5/a23/wZwpmL2UDM5gzM3IDOwYjN1UTM1QDN5MjM5ADMwAjMwUzLygzLxQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
係數b(i=0,1,2,…,n-1)由S·M為有理式這一條件確定。
6.對於給定的含有根式的代數式,如果可以看成是某一根式的多項式P(x),則可利用互質多項式P(x)和Q(x)的性質,輾轉相除,可得多項式M(x)與N(x),使得M(x)P(x)+N(x)Q(x)=1,則M(x)即為P(x)的共軛因式。
7.對於表達式
![共軛因式](/img/8/0af/wZwpmL4EDO4cDMyEjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLxYzL0gzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(此處p, q, …, r是小於n的自然數), 可取
![共軛因式](/img/9/6db/wZwpmLwgDM2ATNzcDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL3QzLxYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
求共軛因式常用於根式運算的使分母(或分子)有理化的過程中。中國的《九章算術》“少廣”章中敘述有:“若母不可開者,又以母乘定實,乃開之,訖,令如母而一。”譯為現代算術,即
![共軛因式](/img/0/9e0/wZwpmLwUTNxMzMyIDOwYjN1UTM1QDN5MjM5ADMwAjMwUzLygzL4AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
足見其已有了有理化分母的思想,秦九韶在所著《數書九章》中,也運用了有理化方法 。