兩平面平行的定義
兩平面平行是兩平面間的一種位置關係,如果兩個平面沒有公共點,我們說這兩個平面互相平行,一個平面稱為另一個平面的平行平面。
兩平面平行的性質定理
定理1 兩平面平行,其中一個平面內的直線必平行於另一個平面。
定理2 如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。
定理3 一條直線垂直於兩個平行平面中的一個平面,它也垂直於另一個平面 。
例 如圖1,在正方體ABCD-ABCD中,M,N,P分別是CC,BC,CD的中點,求證:
(1)AP⊥MN;
(2)平面MNP∥平面ABD。
![圖1](/img/f/45b/wZwpmL0QzM5MTO1kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLzAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
證明 (1)連結BC,BC,則BC⊥BC,BC是AP在面BBCC上的射影,
∴ AP⊥BC.
又BC∥MN,
∴ AP⊥MN.
(2)連結BD.
∵ P,N分別是DC,BC的中點,
∴ PN∥BD.又BD∥BD,
∴ PN∥BD.
又PN不在平面ABD上,
∴ PN∥平面ABD.
同理,MN∥平面ABD.
又PN∩MN=N,
∴ 平面PMN∥平面ABD。
說明 將空間問題轉化為平面問題,是解決立體幾何問題的重要策略.解決這類問題關鍵在於選擇或添加適當的平面或線。由於M,N,P都為中點,故添加BC,BC作為聯繫的橋樑 。
兩平面平行的判定
![兩平面平行](/img/b/917/wZwpmLwEjNxcTO1MzM2EzM1UTM1QDN5MjM5ADMwAjMwUzLzMzL0EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
設兩平面的方程分別為
![兩平面平行](/img/2/825/wZwpmL4IjM1IDO4EjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxYzLxgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![兩平面平行](/img/7/d5b/wZwpmL4gjMwIDOzUzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1czL0YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![兩平面平行](/img/8/681/wZwpmL2MjN0cTM5AjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwYzLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![兩平面平行](/img/6/5a1/wZwpmL4IDN3EDO0cTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL2IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
其法線向量分別為和。
兩平面平行的充要條件:
![兩平面平行](/img/2/7eb/wZwpmL1UzM3QDM3kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLyIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
即
![兩平面平行](/img/b/03f/wZwpmL1UjM2kDNwIjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL2EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
用分量來表示為:
![兩平面平行](/img/5/990/wZwpmLxcTN0QzM5MzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzczL4EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
亦即
![兩平面平行](/img/3/48c/wZwpmL1cTMxIDM1IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzLzYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
或
![兩平面平行](/img/c/2c4/wZwpmL3EjN1QTOwIzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczL0UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![兩平面平行](/img/1/e11/wZwpmLzAjNxMTN2QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL0czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![兩平面平行](/img/9/006/wZwpmL3gzNzczM3UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzLygzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![兩平面平行](/img/0/92c/wZwpmL3AzM1UzMyEDMyADN0UTMyITNykTO0EDMwAjMwUzLxAzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
若,即,則平面的方程為:
![兩平面平行](/img/0/479/wZwpmL3IzN1gTNzQzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL4EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
即:
![兩平面平行](/img/c/2d0/wZwpmL2YjMxcDN3kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLzAzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
與平面β的方程一致,所以兩平面重合,由此我們看出:
![兩平面平行](/img/b/917/wZwpmLwEjNxcTO1MzM2EzM1UTM1QDN5MjM5ADMwAjMwUzLzMzL0EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
兩平面平行的充要條件是
![兩平面平行](/img/7/6b2/wZwpmLzEzMzUTO3EDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLxgzLwUzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![兩平面平行](/img/b/917/wZwpmLwEjNxcTO1MzM2EzM1UTM1QDN5MjM5ADMwAjMwUzLzMzL0EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
兩平面重合的充要條件是
![兩平面平行](/img/0/fea/wZwpmLwEzNxIzN3gjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL0AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
兩平面相交
![兩平面平行](/img/7/627/wZwpmL2ATOwIDM4kTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzL2IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
即不平行,即
![兩平面平行](/img/4/9c1/wZwpmLyMTNzcDO0IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzLxEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
這時兩平面相交時所得直線的方程可用方程組
![兩平面平行](/img/2/cc4/wZwpmL1AjM4ITNxgzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4czL0UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
來表示 。
![圖2](/img/1/23e/wZwpmLyQDNygDOzIzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczLzEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![兩平面平行](/img/b/917/wZwpmLwEjNxcTO1MzM2EzM1UTM1QDN5MjM5ADMwAjMwUzLzMzL0EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![兩平面平行](/img/7/627/wZwpmL2ATOwIDM4kTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzL2IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![兩平面平行](/img/b/678/wZwpmL3gTNyUjNzkjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL3gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
為了確定起見,規定兩平面組成的二面角中,不大於直角的為兩平面的交角,記作θ,如圖2,所成的夾角θ就是兩法線向量的夾角θ,即(圖1),且
![兩平面平行](/img/3/632/wZwpmLyQDOxYDMxITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzL1AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![兩平面平行](/img/f/2a5/wZwpmLzgjN0AjMxkTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzL4QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![兩平面平行](/img/7/a01/wZwpmL0cjMwcTMzkzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czL3gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
特別地,當時,, 故又可以得兩平面互相垂直的充要條件為
![兩平面平行](/img/e/406/wZwpmL0QDNwQTOzgTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL2UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)