問題概述
旅行商問題,即TSP問題(Traveling Salesman Problem)是數學領域中著名問題之一。假設有一個旅行商人要拜訪N個城市,他必須選擇所要走的路徑,路徑的限制是每個城市只能拜訪一次,而且最後要回到原來出發的城市。路徑的選擇目標是要求得的路徑路程為所有路徑之中的最小值。TSP問題是一個NPC問題。
問題由來
TSP的歷史很久,最早的描述是1759年歐拉研究的騎士週遊問題,即對於西洋棋棋盤中的64個方格,走訪64個方格一次且僅一次,並且最終返回到起始點。
TSP由美國RAND公司於1948年引入,該公司的聲譽以及線形規劃這一新方法的出現使得TSP成為一個知名且流行的問題。
問題研究
同樣的問題,在中國還有另一個相似的問題:一個郵遞員從郵局出發,到所轄街道投郵件,最後返回郵局,如果他必須走遍所轄的每條街道至少一次,那么他應該如何選擇投遞路線,使所走的路程最短?這個描述之所以稱為中國郵遞員問題(Chinese Postman Problem CPP)因為是我國學者管梅古教授於1962年提出的這個問題並且給出了一個解法。
人工智慧上的旅行商問題,以下給出的是算法,只是理解算法之用。
/****************算法總框架*****************************/
int i;
gs.search_init(adaptee.list_place.getSelectedIndex(),adaptee.list_fun.getSelectedIndex());
do{ i=gs.search_step(); }while(i==0);
/***************searchinit**************************/
public void search_init(int startindex,int strategy)
{
this.strategy = strategy;
AStar.graph= G;
G.setSize(AStar.len);
start.index = startindex;
Vertex s =new Vertex();
s.index = start.index;
s.parent = -1;
n =null;
s.value =f(s.index); //s的估價函式值
G.add(s);
start.parentpos = -1;
start.value = s.value;
open.add(start);
step=0;
}
/***************searchstep**************************/
public int search_step()
{
Open m ;
Vertex old_m;
int i,j;
int f;
int parentpos;
if(open.next==null)
return -1;//查找失敗
//擴展的步驟數增加
step++;
//Open 表非空
//Open 表中移出第一個
n = open.removeFirst();
//n放入 CLOSE 中 ,返回放入的位置
parentpos=close.Add(n.index, n.parentpos);
if(n.index == start.index&&step!=1) //結束狀態
return 1;
//擴展n結點
i=n.index;
for(j=0;j<len;j++)
{
if(i!=j&&value [j]!=-1) //對於所有n的後繼結點 m(j)
{
if(j==start.index&&isAll(n)) //所有城市已訪問過,且回到出發城市
{
f=f(j); //計算此時的f值
old_m=G.getVertex(j);
if(old_m!=null)
if(old_m.value>f||old_m.value==0)
G.add(j,i,f); //j(m) i(n),G中添加j(m),父節點為i(n),估價函式值為f
G.addSub(i,j); //i(n)的後繼中添加j(m)
m= new Open(j,parentpos,f); //Open表中添加m(j)
open.add(m);
continue;
}
if(!isExist(n,j)) //m(j)不在n(i)的祖先中(不擴張n的祖先結點)
{
f=f(j); //計算f值
//取得舊的m(j) 中value最小的,G中的節電保存了從出發城市到此地最小估價函式
old_m=G.getVertex(j);
// m(j)不再G中,m(j) 也就不在Close中
if(old_m==null)
{
//j(m) i(n),G中添加j(m),父節點為i(n),估價函式值為f
G.add(j,i,f);
//n(i) 添加後繼 m(j)
G.addSub(i,j);
//加入Open表
m=new Open(j,parentpos,f);
open.add(m); //m添加入 Open 表中
}
else //m(j)在G中,表示Close 表中有m(j) 結點
{
if(old_m.value > f) //新值比較小,採用新值
{
//更新G中的估價函式值,以及相關指針
old_m.value = f;
old_m.parent = i;
//添加相關從Close中刪除的代碼,不刪除亦可
}
G.addSub(i,j); //n(i) 添加後繼 m(j)
//從Close 中刪除,移入Open表中,實際上Close表中仍然保留
m = new Open(j,parentpos,f);
open.add(m);
}
}
}
}
//本次沒查找到解,請繼續
return 0;
}