FSI與傳統發動機
傳統的汽油發動機是通過電腦採集凸輪位置以及發動機各相關工況從而控制噴油嘴將汽油噴入進氣歧管。汽油在歧管內開始混合,然後再進入到汽缸中燃燒。空氣跟汽油的最佳混合比是14.7/1(也叫理論空燃比),傳統發動機由於汽油跟空氣是在進氣歧管內混合,那么他們只能均勻的混合在一起,所以必須達到理論空燃比才能獲得較好的動力性和經濟性,但由於噴油嘴離燃燒室有一定的距離,汽油同空氣的混合情況受進氣氣流和氣門開關的影響較大,並且微小的油顆粒會吸附在管道壁上,這就的理論空燃比很難
達到,這是傳統發動機無法解決的一個問題。要想解決這一難題,就必須把燃油直接噴射到汽缸中去,這就是奧迪的FSI燃油直噴發動機可以做的。直噴式汽油發動機採用類似於柴油發動機的供油技術,通過一個活塞泵提供所需的100bar以上的壓力,將汽油提供給位於汽缸內的電磁噴射器。然後通過電腦控制噴射器將燃料在最恰當的時間直接注入燃燒室,通過對燃燒室內部形狀的設計,讓混合氣能產生較強的渦流使空氣和汽油充分混合。然後使火花塞周圍區域能有較濃的混合氣,其他周邊區域有較稀的混合氣,保證了在順利點火的情況下儘可能的實現稀薄燃燒。這就是分層燃燒的精髓所在。
FSI技術兩種不同的注油模式
分層注油和均勻注油模式。在發動機低速或中速運轉時採用分層注油模式,此時節氣門為半開狀態,空氣由進氣管進入汽缸撞在活塞頂部,由於活塞頂部製作成特殊的形狀從而在火花塞附近形成期望中的渦流。當壓縮過程接近尾聲時,少量的燃油由噴射器噴出,形成可燃氣體。這種分層注油方式可充分提高發動機的經濟性,因為在轉速較低、負荷較小時除了火花塞周圍需要形成濃度較高的油氣混合物外,燃燒室的其它地方只需空氣含量較高的混合氣即可,而FSI使其與理想狀態非常接近。當節氣門完全開啟,發動機高速運轉時,大量空氣高速進入汽缸形成較強渦流並與汽油均勻混合。從而促進燃油充分燃燒,提高發動機的動力輸出。電腦不斷的根據發動機的工作狀況改變注油模式,始終保持最適宜的供油方式。燃油的充分利用不僅提高了燃油的利用效率和發動機的輸出而且改善了排放。
FSI直噴發動機既然有如此多的技術優勢,相應的其對發動機硬體或者油品的要求必然也很高。首先,它的噴油器安裝在燃燒室上的,汽油直接噴注到汽缸當中去,油路必須具備比缸內更高的壓力才能把汽油有效的噴注到汽缸當中去。燃油管道內的壓力提高以後,管道的各個接頭的密封處的強度也要隨之提高。這樣,對噴油器的設計和製造工藝也提出了更高的要求。而且由於噴油器是直接安裝在燃燒室上的,那么必須需要噴油器有耐高溫的能力。其次,FSI直噴發動機的壓縮比很高,達到了驚人的11.5,在這種情況下對油的標號和油質要求就很嚴格。就目前中國的情況來說,必須使用98號的高清潔度汽油。
就技術來說,FSI缸內直噴發動機非常適合目前油價容易上漲的市場需要。作為奧迪公司和競爭對手抗衡的一張王牌,這款發動機有它自身強大的生命力,必然會引領發動機的發展趨勢 。
代表車型
代表車型:奧迪A4 2.0T 奧迪A6 2.0T