簡介
黑體,是一個理想化了的物體,它能夠吸收外來的全部電磁輻射,並且不會有任何的反射與透射。換句話說,黑體對於任何波長的電磁波的吸收係數為1,透射係數為0。但黑體不見得就是黑色的,即使它沒辦法反射任何的電磁波,它也可以放出電磁波來,而這些電磁波的波長和能量則全取決於黑體的溫度,不因其他因素而改變。當然,黑體在700K以下時看起來是黑色的,但那也只是因為在700K之下的黑體所放出來的輻射能量很小且輻射波長在可見光範圍之外。若黑體的溫度高過上述的溫度的話,黑體則不會再是黑色的了,它會開始變成紅色,並且隨著溫度的升高,而分別有橘色、黃色、白色等顏色出現,即黑體吸收和放出電磁波的過程遵循了光譜,其軌跡為普朗克軌跡(或稱為黑體軌跡)。黑體輻射實際上是黑體的熱輻射。在黑體的光譜中,由於高溫引起高頻率即短波長,因此較高溫度的黑體靠近光譜結尾的藍色區域而較低溫度的黑體靠近紅色區域。在室溫下,黑體輻射的能量集中在長波電磁輻射和遠紅外波段;當黑體溫度到幾百攝氏度之後,黑體開始發出可見光。以鋼材為例根據溫度的升高過程,分別變為紅色,橙色,黃色,當溫度超過1300攝氏度時開始發白色和藍色。當黑體變為白色的時候,它同時會放出大量的紫外線。黑體一詞是在1862年由基爾霍夫所命名並引入熱力學內,黑體所輻射出來的光線則稱做黑體輻射。黑體單位表面積的輻射功率P與其溫度的四次方成正比,即:
P=σ式中σ稱為斯特藩-玻爾茲曼常數,又稱為斯特藩常數。
黑體的放射過程引發物理學家對量子場內的熱平衡狀態的興趣。在經典物理中,所有熱平衡的傅立葉模型都遵循能量均分定理。當物理學家使用經典物理解釋黑體時,不可避免的發生了紫外災難,即用於計算黑體輻射強度的瑞利-金斯定律在輻射頻率趨向於無窮大時計算結果也趨向於無窮大。由於黑體可以用於檢驗熱平衡的性質,因為它放出的輻射遵循熱力學散射,歷史上對黑體的研究成為了量子物理開始的契機。
定義
⑴在任何溫度下,完全吸收任何波長的外來輻射而無任何反射的物體。⑵吸收比為1的物體。
⑶在任何溫度下,對入射的任何波長的輻射全部吸收的物體。
以上三條等價。
工業套用
套用簡介
黑體在工業上主要套用於測溫領域,最主要的產品是黑體爐。對輻射溫度計的校準、檢定,通常採用比較法,就是通過高穩定度的輻射源(通常為黑體輻射源)和其他配套設備,將標準器所復現的溫度與被檢輻射溫度計所復現的溫度進行比較,以判斷其是否合格或給出校準結果。在校準、檢定工作中,輻射源一般在-6~1200℃(或1600℃)範圍內可用開口式中、低溫黑體爐,1200(或1600℃)~3200℃採用抽真空並充惰性氣體保護的高溫黑體爐。標準器分別為二等標準熱電偶(二等標準鉑電阻溫度計)和標準光學(光電)高溫計。
套用原理
輻射溫度計是依據物體輻射的能量來測量溫度的儀表。根據輻射理論,任何物體只要不處於絕對零度(-273.15℃),那么在其他任意溫度下都存在熱輻射。處於熱平衡狀態的黑體在半球方向的單色輻射出射度是波長和溫度的函式。在一定的波長下,黑體的單色輻射出射度是溫度的單值函式,可以通過某一波長下的單色輻射出射度的測量來得出黑體的溫度。這就是輻射測溫學的理論基礎,黑體輻射的普朗克輻射定律。
在實際測量中,輻射溫度計的單色器不可能是完全單色的。而且,探測器也要求獲得一定光譜範圍的輻射能量,否則由於所接收的能量很小而無法作出回響。同時,實際被測物體也不是黑體。
測溫時,將輻射溫度計瞄準被測物體,輻射溫度計的探測器接收到被測物體所輻射的能量,經信號處理電路轉換為相應的電信號或進一步通過顯示器直接顯示出被測物體的溫度值。
根據以上輻射溫度計的測溫原理,可尋找出輻射能量的波長在[λ1,λ2]範圍內的輻射源;輻射能量對應於黑體某一特定的溫度,但是輻射源本身的溫度並不等於此溫度,輻射能量連續可調,輸出的輻射能量較高。
公式
對各種波長的電磁輻射的吸收係數恆等於 1的理想輻射體。黑體的光譜輻射出射度由普朗克公式表示:
為絕對黑體的光譜輻射出射度 (瓦/厘米·微米)。其積分輻射出射度RB為RB=T
=5.669606×10(W/cm·K),是斯忒藩-玻耳茲曼常數;T為絕對溫度。理想的絕對黑體是不存在的,但可以製作接近於理想的黑體。取一等溫容器,內壁塗黑,開一小孔,光線一旦進入小孔,在內壁幾次反射後幾乎完全被吸收,這一小孔近似於黑體。黑體的有效發射率接近1,接近的程度與容器的形狀、開孔的大小、內壁的發射率和溫度均勻度等因素有關。
結構
精心設計的黑體用作標準的輻射源。中等溫度的黑體結構。 一個標準黑體必須選擇合適的腔體形狀,並計算其有效發射率,嚴格控制腔體的溫度及其均勻性,精確測定其溫度值和光闌的面積。控制溫度均勻性的較好辦法,是採用熱管技術。上述結構的黑體,光闌孔徑不可能很大,一般直徑為幾十毫米。大面積的黑體採用蜂窩結構。
黑體 (熱力學)
任何物體都具有不斷輻射、吸收、發射電磁波的本領。輻射出去的電磁波在各個波段是不同的,也就是具有一定的譜分布。這種譜分布與物體本身的特性及其溫度有關,因而被稱之為熱輻射。為了研究不依賴於物質具體物性的熱輻射規律,物理學家們定義了一種理想物體——黑體(black body),以此作為熱輻射研究的標準物體。
所謂黑體是指入射的電磁波全部被吸收,既沒有反射,也沒有透射( 當然黑體仍然要向外輻射)。顯然自然界不存在真正的黑體,但許多地物是較好的黑體近似( 在某些波段上)。 黑體輻射情況只與其溫度有關,與組成材料無關。
定律
基爾霍夫輻射定律(Kirchhoff),在熱平衡狀態的物體所輻射的能量與吸收的能量之比與物體本身物性無關,只與波長和溫度有關。按照基爾霍夫輻射定律,在一定溫度下,黑體必然是輻射本領最大的物體,可叫作完全輻射體。用公式表達如下:
Er =α*Eo
Er——物體在單位面積和單位時間內發射出來的輻射能;
α——該物體對輻射能的吸收係數;
Eo——等價於黑體在相同溫度下發射的能量,它是常數。
普朗克輻射定律(Planck)則給出了黑體輻射的具體譜分布,在一定溫度下,單位面積的黑體在單位時間、單位立體角內和單位波長間隔內輻射出的能量為
B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1
B(λ,T)—黑體的光譜輻射亮度(W,m-2 ,Sr-1 ,μm-1 )
λ—輻射波長(μm)
T—黑體絕對溫度(K、T=t+273k)
C—光速(2.998×108 m·s-1 )
h—普朗克常數, 6.626×10-34 J·S
K—波爾茲曼常數(Bolfzmann), 1.380×10-23 J·K-1 基本物理常數
由圖2.2可以看出:
①在一定溫度下,黑體的譜輻射亮度存在一個極值,這個極值的位置與溫度有關, 這就是維恩位移定律(Wien)
λm T=2.898×103 (μm·K)
λm —最大黑體譜輻射亮度處的波長(μm)
T—黑體的絕對溫度(K)
根據維恩定律,我們可以估算,當T~6000K時,λm ~0.48μm(綠色)。這就是太陽輻射中大致的最大譜輻射亮度處。
當T~300K, λm~9.6μm,這就是地球物體輻射中大致最大譜輻射亮度處。
②在任一波長處,高溫黑體的譜輻射亮度絕對大於低溫黑體的譜輻射亮度,不論這個波長是否是光譜最大輻射亮度處。
如果把B(λ,T)對所有的波長積分,同時也對各個輻射方向積分,那么可得到斯特番—波耳茲曼定律(Stefan-Boltzmann),絕對溫度為T的黑體單位面積在單位時間內向空間各方向輻射出的總能量為B(T)
B(T)=δT4 (W·m-2 )
δ為Stefan-Boltzmann常數, 等於5.67×10-8 W·m-2 ·K-4
但現實世界不存在這種理想的黑體,那么用什麼來刻畫這種差異呢?對任一波長, 定義發射率為該波長的一個微小波長間隔內, 真實物體的輻射能量與同溫下的黑體的輻射能量之比。顯然發射率為介於0與1之間的正數,一般發射率依賴於物質特性、 環境因素及觀測條件。如果發射率與波長無關,那么可把物體叫作灰體(grey body), 否則叫選擇性輻射體。
模型
黑體的吸收率α=1,這意味著黑體能夠全部吸收各種波長的輻射能。儘管在自然界並不存在黑體,但用人工的方法可以製造出十分接近於黑體的模型。黑體模型的原理如下:取工程材料(它的吸收率必然小於黑體的吸收率)製造一個球殼形的空腔,使空腔壁面保持均勻的溫度,並在空腔上開一個小孔。射入小孔的輻射在空腔內要經過多次的吸收和反射,而每經歷一次吸收,輻射能就按照內壁吸收率的大小被減弱一次,最終能離開小孔的能量是微乎其微的,可以認為所投入的輻射完全在空腔內部被吸收。所以,就輻射特性而言,小孔具有黑體表面一樣的性質。值得指出的是,小孔面積占空腔內壁總面積的比值越小,小孔就月接近黑體。若這個比值小於0.6%,當內壁吸收率為60%時,計算表明,小孔的吸收率可達99.6%。套用這種原理建立的黑體模型,在黑體輻射的實驗研究以及為實際物體提供輻射的比較標準等方面都十分有用。
研究
運用量子統計的方法,分別從諧振子模型和光子氣體模型這兩種基本模型,推導了黑體輻射能譜公式,即著名的普朗克公式;並且討論了在高頻極限下回到經典統計力學;在低頻極限情況下,卻表現出明顯的量子效應;此外還對黑體輻射的各種反映熱力學性質的物理量進行了較全面的研究。
眾所周知,黑體輻射在物理學中的重要地位,玻色—愛因斯坦統計法最重要的套用之一,就是研究黑體輻射的平衡問題,討論溫度為T,體積為V的輻射空腔。1兩種推導普朗克公式的基本模型1.1諧振子模型把系統看成是具有能量(n+12)ω的諧振子集合,其中n=0,1,2,3,…而ω是振子。