麥克斯韋-玻爾茲曼統計

統計物理學的一個規律。

名稱

麥克斯韋—玻爾茲曼統計

簡介

是描述獨立定域粒子體系分布狀況的統計規律。
所謂獨立定域粒子體系指的是這樣一個體系:粒子間相互沒有任何作用,互不影響,並且各個不同的粒子之間都是可以互相區別的,在量子力學背景下只有定域分布粒子體系中的粒子是可以相互區分的,因此這種體系被稱為獨立定域粒子體系。而在經典力學背景下,任何一個粒子的運動都是嚴格符合力學規律的,有著可確定的運動軌跡可以相互區分,因此所有經典粒子體系都是定域粒子體系,在近獨立假設下,都符合麥克斯韋-玻爾茲曼統計。
因而符合麥克斯韋—玻爾茲曼統計分布的粒子,當他們處於某一分布<math>\left\{ n_j \right\}</math>(“某一分布”指這樣一種狀態:即在能量為<math>\left\{ \epsilon_j \right\}</math>的能級上同時有<math>n_j</math>個粒子存在著,不難想像,當從巨觀觀察體系能量一定的時候,從微觀角度觀察體系可能有很多種不同的分布狀態,而且在這些不同的分布狀態中,總有一些狀態出現的幾率特別的大,而其中出現幾率最大的分布狀態被稱為最可幾分布)時,體系總狀態數為:
<math>
\Omega=N!\prod_\left(\frac{g_j^}{n_j!}\right) </math>
<math>
\Omega=N!\prod_\left(\frac{g_j^}{n_j!}\right) </math>
<math>
g_j=3;n_j=2;\Omega_j=9 </math>
由於量子統計在數學處理上非常困難,因此在處理實際問題時經常引入一些近似條件,使費米-狄拉克統計和玻色-愛因斯坦統計退化成為經典的麥克斯韋—玻爾茲曼統計。

相關詞條

相關搜尋

熱門詞條

聯絡我們