隨機優勢

隨機優勢

隨機優勢,是風險資產選擇提供了一個簡單的工具。

隨機占優(Stochastic dominance),為風險資產選擇提供了一個簡單的工具(Whitmore和Findlay,1978)。我們用一個簡單的例子解釋隨機占優關係:假設投資者想在兩個風險資產X和Y之間做一個選擇,如果在未來任何情況下X的收益總是超過Y的收益,只要投資者是永遠不會滿足的,那么投資者不會持有Y,因為持有X得到的回報一定會更好。因此,運用這種方法,不需要對投資者的效用函式、投資者需要規避的風險因子以及風險資產收益的分布做任何假設,我們就可以對風險資產進行排序。
上述例子僅僅是一階隨機占優(first-order stochastic dominance,FSD)的一個特例。更一般地,如果對任意x,資產Y的收益小於或等於x的機率大於資產X,那么資產X對資產Y是一階隨機占優的。只要投資者的目標是效用最大化,而且永遠不會滿足,那么投資者就不會選擇Y。

主要的三種關係

隨機占優關係主要有三種:一階隨機占優(FSD);二階隨機占優(SSD)和三階隨機占優(TSD)。隨機占優的嚴格定義是:假設X和Y的收益的累積機率密度函式(CDF)分別為F1和G1,X對Y是一階隨機占優的,若且唯若對任意的x有

因此如果X 的收益的機率密度函式在Y 的收益的機率密度函式的右邊,那么X 對Y 是一階隨機占優的。一階隨機占優的條件很強,因此有了二階隨機占優和三階隨機占優。定義F2 和G2 分別為F1和G1 與橫軸以及x=a(a 為任意實數)所圍區域的面積,那么X 對Y 是二階隨機占優的,若且唯若對任意的x 有
二階隨機占優允許X 和Y 的收益的累積機率密度函式有交叉的可能。最後,定義F3 和G3 分別為F2 和G2 與橫軸以及x=a(a 為任意實數)所圍區域的面積,uX和uY 分別為X 和Y 的期望收益。那么X 對Y 是三階隨機占優的,若且唯若對任意的x 有
三種占優關係之間的聯繫是
因此,我們證明了一階隨機占優,就說明存在二階和三階的隨機占優。隨機占優的成立只需對投資者的效用函式做以下假設:一階隨機占優要求投資者的目標是效用最大化,而且永遠不會滿足;二階隨機占優要求投資者不但是不會滿足的,而且是風險厭惡的;三階隨機占優要求投資者不但是不會滿足和風險厭惡的,而且絕對風險厭惡係數是遞減的。
如果存在隨機占優,投資者持有占優資產預期效用總是更高的,因此理性投資者不會持有不占優的資產。另外,從直觀意義上看,如果資產X對資產Y是一階隨機占優的,那說明無論在什麼情況下,資產X的收益都不低於資產Y的收益,此時會有無風險的套利機會存在,即賣空資產Y買入資產X就可以獲得無風險的收益。

相關經濟學理論

前景理論(Prospect Theory)
累積前景理論
等級依賴效用理論

相關詞條

相關搜尋

熱門詞條

聯絡我們