解不等式

解不等式

不等式是用不等號將兩個解析式連結起來所成的式子。在一個式子中的數的關係,不全是等號,含不等符號的式子,那它就是一個不等式,例如:2x+2y≥2xy,sinx≤1,ex>0 ,2xx是超越不等式。不等式既可以表達一個命題,也可以表示一個問題。

相關性質

解不等式解不等式

①如果xy,那么yx;如果yx,那么xy;

②如果xy,yz;那么xz;

③如果xy,而z為任意實數或整式,那么x zy z;

④ 如果xy,z0,那么xzyz;如果xy,z0,那么xzyz;

⑤如果xy,z0,那么x÷zy÷z;如果xy,z0,那么x÷zy÷z。

⑥如果xy,mn,那么x my n。

⑦如果xy0,mn0,那么xmyn。

⑧如果xy0,那么x的n次冪y的n次冪(n為正數)。

如果由不等式的基本性質出發,通過邏輯推理,可以論證大量的初等不等式,以下是其中比較有名的。

⑨如果ab,c0,那么acbc。

如果ab,c0,那么acbc。

可遵循的一些同解原理

主要的有:

①不等式F(x)< G(x)與不等式 G(x)>F(x)同解。

②如果不等式F(x) < G(x)的定義域被解析式H( x )的定義域所包含,那么不等式 F(x)

③如果不等式F(x)0,那么不等式F(x)<0,那么不等式F(x)H(x)G(x)同解。

④不等式F(x)G(x)>0與不等式同解;不等式F(x)G(x)<0與不等式同解。

注意事項

1.符號:

不等式兩邊都乘以或除以一個負數,要改變不等號的方向。

2.確定解集:

比兩個值都大,就比大的還大;

比兩個值都小,就比小的還小;

比大的大,比小的小,無解;

比小的大,比大的小,有解在中間。

三個或三個以上不等式組成的不等式組,可以類推。

3.另外,也可以在數軸上確定解集:

把每個不等式的解集在數軸上表示出來,數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集。有幾個就要幾個。帶=號的,數軸上的點是實心的,反之,就是空心的。

解不等式組

解不等式組,可以先把其中的不等式逐條算出各自的解集,然後分別在數軸上表示出來。

以兩條不等式組成的不等式組為例,

①若兩個未知數的解集在數軸上表示同向左,就取在左邊的未知數的解集為不等式組的解集,此乃“同小取小”

②若兩個未知數的解集在數軸上表示同向右,就取在右邊的未知數的解集為不等式組的解集,此乃“同大取大”

③若兩個未知數的解集在數軸上相交,就取它們之間的值為不等式組的解集。若x表示不等式的解集,此時一般表示為a

④若兩個未知數的解集在數軸上向背,那么不等式組的解集就是空集,不等式組無解。

5若兩個未知數的解集出現如:x≤1,y≥1,則解只有1.

(2)求不等式10(x+4)+x≤84的非負整數解.

分析:對(1)小題中要明白“不小於”即“大於或等於”,用符號表示即為“≥”;(2)小題非負整數,即指正數或零中的整數,所以此題的不等式的解必須是正整數或零.在求解過程中注意正確運用不等式性質.

解:

∴ 120-8x≥84-3(4x+1)

(2)∵10(x+4)+x≤84

∴10x+40+x≤84

∴11x≤44

∴x≤4

因為不大於4的非負整數有0,1,2,3,4五個,所以不等式10(x+4)+x≤84的非負整數解是4,3,2,1,0.

例5 解關於x的不等式

(1)ax+2≤bx-1 (2)m(m-x)>n(n-x)

分析:解字母係數的不等式與解數字係數不等式的方法、步驟都是類似的,只是在求解過程中常要對字母係數進行討論,這就增加了題目的難度.此類問題主要考察了對問題的分析、分類的能力:它不但要知道什麼時候該進行分類討論,而且還要求能準確地分出類別來進行討論(結合例題解法再給與說明).

解:(1)∵ax+2≤bx-1

∴ax-bx≤-1-2

即 (a-b)x≤-3

此時要依x字母係數的不同取值,分別求出不等式的解的形式.

即(n-m)x>n2-m2

當m>n時,n-m<0,∴x

當m0,∴x>n+m;

當m=n時,n-m=0,n2=m2,n2-m2=0,原不等式無解.這是因為此時無論x取任何值時,不等式兩邊的值都為零,只能是相等的,所以不等式不成立.

例6 解關於x的不等式

3(a+1)x+3a≥2ax+3.

分析:由於x是未知數,所以把a看作已知數,又由於a可以是任意有理數,所以在套用同解原理時,要區別情況,分別處理.

解:去括弧,得

3ax+3x+3a≥2ax+3

移項,得

3ax+3x-2ax≥3-3a

合併同類項,得

(a+3)x≥3-3a

(3)當a+3=0,即a=-3,得0·x≥12

這個不等式無解.

說明:在處理字母係數的不等式時,首先要弄清哪一個字母是未知數,而把其它字母看作已知數,在運用同解原理把未知數的係數化為1時,應作合理的分類,逐一討論.

例7 m為何值時,關於x的方程3(2x-3m)-2(x+4m)=4(5-x)的解是非正數.

分析:根據題意,應先把m當作已知數解方程,然後根據解的條件列出關於m的不等式,再解這個不等式求出m的值或範圍.注意:“非正數”是小於或等於零的數.

解:由已知方程有6x-9m-2x-8m=20-4x

可解得 8x=20+17m

已知方程的解是非正數,所以

例8 若關於x的方程5x-(4k-1)=7x+4k-3的解是:(1)非負數,(2)負數,試確定k的取值範圍.

分析:要確定k的範圍,應將k作為已知數看待,按解一元一次方程的步驟求得方程的解x(用k的代數式表示之).這時再根據題中已知方程的解是非負數或是負數得到關於k的不等式,求出k的取值範圍.這裡要強調的是本題不是直接去解不等式,而是依已知條件獲得不等式,屬於不等式的套用.

解:由已知方程有5x-4k+1=7x+4k-3

可解得 -2x=8k-4

即 x=2(1-2k)

(1)已知方程的解是非負數,所以

(2)已知方程的解是負數,所以

例9 當x在什麼範圍內取值時,代數式-3x+5的值:

(1)是負數 (2)大於-4

(3)小於-2x+3 (4)不大於4x-9

分析:解題的關鍵是把“是負數”,“大於”,“小於”,“不大於”等文字語言準確地翻譯成數字元號.

解:(1)根據題意,應求不等式

-3x+5<0的解集

解這個不等式,得

(2)根據題意,應求不等式

-3x+5>-4的解集

解這個不等式,得

x<3

所以當x取小於3的值時,-3x+5的值大於-4.

(3)根據題意,應求不等式

-3x+5<-2x+3的解集

-3x+2x<3-5

-x<-2

x>2

所以當x取大於2的值時,-3x+5的值小於-2x+3.

(4)根據題意,應求不等式

-3x+5≤4x-9的解集

-3x-4x≤-9-5

-7x≤-14

x≥2

所以當x取大於或等於2的值時,-3x+5的值不大於4x-9.

例10

分析:

解不等式,求出x的範圍.

解:

說明:套用不等式知識解決數學問題時,要弄清題意,分析問題中數量之間的關係,正確地表示出數學式子.如“不超過”即為“小於或等於”,“至少小2”,表示不僅少2,而且還可以少得比2更多.

例11 三個連續正整數的和不大於17,求這三個數.

分析:

解:設三個連續正整數為n-1,n,n+1

根據題意,列不等式,得

n-1+n+n+1≤17

所以有四組:1、2、3;2、3、4;3、4、5;4、5、6.

說明:解此類問題時解集的完整性不容忽視.如不等式x<3的正整數解是1、2,它的非負整數解是0、1、2.

例12 將18.4℃的冷水加入某種電熱淋浴器內,現要求熱水溫度不超過40℃,如果淋浴器每分鐘可把水溫上升0.9℃,問通電最多多少分鐘,水溫才適宜?

分析:設通電最多x分鐘,水溫才適宜.則通電x分鐘水溫上升了0.9x℃,這時水溫是(18.4+0.9x)℃,根據題意,應列出不等式18.4+0.9x≤40,解得,x≤24.

答案:通電最多24分,水溫才適宜.

說明:解答此類問題時,對那些不確定的條件一定要充分考慮,並“翻譯”成數學式子,以免得出失去實際意義或不全面的結論.

例13 礦山爆破時,為了確保全全,點燃引火線後,人要在爆破前轉移到300米以外的安全地區.引火線燃燒的速度是0.8厘米/秒,人離開速度是5米/秒,問引火線至少需要多少厘米?

解:設引火線長為x厘米,

根據題意,列不等式,得

解之得,x≥48(厘米)

答:引火線至少需要48厘米.

*例14 解不等式|2x+1|<4.

解:把2x+1看成一個整體y,由於當-4<4時,有|y|<4,即-4<2x+1<4,

巧解一元一次不等式

怎樣才能正確而迅速地解一元一次不等式?現結合實例介紹一些技巧,供參考.

1.巧用乘法

例1 解不等式0.25x>10.5.

分析 因為0.25×4=1,所以兩邊同乘以4要比兩邊同除以0.25來得簡便.

解 兩邊同乘以4,得x>42.

2.巧用對消法

例2 解不等式

解 原不等式變為

3.巧用分數加減法法則

故 y<-1.

4.逆用分數加減法法則

解 原不等式化為

5.巧用分數基本性質

例5 解不等式

約去公因數2後,兩邊的分母相同;②兩個常數項移項合併得整數.

例6 解不等式

分析 由分數基本性質,將分母化為整數和去分母一次到位可避免繁瑣的運算.

解 原不等式為

整理,得8x-3-25x+4<12-10x,

思考:例5可這樣解嗎?請不妨試一試.

6.巧去括弧

去括弧一般是內到外,即按小、中、大括弧的順序進行,但有時反其道而行之即由外到內去括弧往往能另闢捷徑.

7.逆用乘法分配律

例8 解不等式

278(x-3)+351(6-2x)-463(3-x)>0.

分析 直接去括弧較繁,注意到左邊各項均含有因式x-3而逆用分配律可速解此題.

解 原不等式化為

(x-3)(278-351×2+463)>0,

即 39(x-3)>0,故x>3.

8.巧用整體合併

例9 解不等式

3{2x-1-[3(2x-1)+3]}>5.

解 視2x-1為一整體,去大、中括弧,得3(2x-1)-9(2x-1)-9>5,整體合併,得-6(2x-1)>14,

9.巧拆項

例10 解不等式

分析 將-3拆為三個負1,再分別與另三項結合可巧解本題.

解 原不等式變形為

得x-1≥0,故x≥1.

練習題

解下列一元一次不等式

③3{3x+2-[2(3x+2)-1]}≥3x+1.

答案

一元一次不等式及一元一次不等式組

一. 填空題(每題3分)

1. 若 是關於 的一元一次不等式,則 =_________.

2. 不等式 的解集是____________.

3. 當 _______時,代數式 的值是正數.

4. 當 時,不等式 的解集時________.

5. 已知 是關於 的一元一次不等式,那么 =_______,不等式的解集是_______.

6. 若不等式組 的解集為 ,則 的值為_________.

7. 小於88的兩位正整數,它的個位數字比十位數字大4,這樣的兩位數有_______個.

8. 小明用100元錢去購買筆記本和鋼筆共30件,如果每枝鋼筆5元,每個筆記本2元,那么小明最多能買________枝鋼筆.

二. 選擇題(每題3分)

9.下列不等式,是一元一次不等式的是 ( )

A. B.

C. D.

10.4與某數的7倍的和不大於6與該數的5倍的差,若設某數為 ,則 的最大整數解是( )

A.1 B.2 C.-1 D0

11.若代數式 的值不大於3,則 的取值範圍是( )

A. B. C. D.

12.某種商品的進價為800元,出售時標價為1200元,後來由於商品積壓,商品準備打折出售,但要保證利潤率不低於5%,則至多可打( )折

A.6 B.7 C.8 D.9

13.若不等式組 的解集是 ,則 的取值範圍是( )

A. B . C. D.

14.不等式 的解集是( )

A. B. C. D.

15.若不等式組 無解,則不等式組 的解集是( )

A. B. C. D.無解

16.如果 那么 的取值範圍是( )

A. B. C. D.

三. 解答題

17.解下列不等式組(每題5分)

1) 2)

18.當 在什麼範圍內取值時,關於 的方程 有:

(1) 正數解;(6分)

(2) 不大於2的解.(6分)

19.如果關於 的不等式 正整數解為1,2,3,正整數 應取怎樣的值?(10分)

20.某腳踏車保管站在某個星期日接受保管的腳踏車共有3500輛.其中變速車保管費是每輛一次0.5元,一般車保管費是0.3元.

(1) 若設一般車停放的輛數為 ,總保管費的收入為 元,試寫出 與 的關係式;(5分)

(2) 若估計前來停放的3500輛腳踏車中,變速車的輛數不少於25%,但不大於40%,試求該保管站這個星期日保管費收入總數的範圍. (5分)

21.某旅遊團有48人到某賓館住宿,若全安排住賓館的底層,每間住4人,房間不夠;每間住5人,有一個房間沒有住滿5人.問該賓館底層有客房多少間?(10分)

答案:

一. 填空題

1. m=1 2. 3. 4. 5.

6.2 7.5 8.13

二. 選擇題

9.A 10.D 11.B 12.B 13.D 14.A 15.C 16.A

三. 解答題

17.1) 2)

18.1) 2)

19.

20.1)

2)

21.設該賓館有x間宿舍; 則x取10或11.

不等式組

1、2X+3>0

-3X+5>0

2、2X<-1

X+2>0

3、5X+6<3X

8-7X>4-5X

4、2(1+X)>3(X-7)

4(2X-3)>5(X+2)

5、2X<4

X+3>0

6、1-X>0

X+2<0

7、5+2X>3

X+2<8

8、2X+4<0

1/2(X+8)-2>0

9、5X-2≥3(X+1)

1/2X+1>3/2X-3

10、1+1/2X>2

2(X-3)≤4

3×60 <= x <= 3×70

1.2x+9y=81

3x+y=34

2.9x+4y=35

8x+3y=30

3.7x+2y=52

7x+4y=62

-4x>3

x+5>-1

4x<3x-5

1/7x<6/7

-8x>10

x=2>6

2x<10

x-2>o.1

-3x<10

x+3>-1

4x>-12

3(2x+5)>2(4x+3)

10_4(x-4)<2(X-1)

5x+1/6-2>x-5/4

2x+5<10

1.2x+9y=81

3x+y=34

2.9x+4y=35

8x+3y=30

3.7x+2y=52

7x+4y=62

4.4x+6y=54

9x+2y=87

5.2x+y=7

2x+5y=19

6.x+2y=21

3x+5y=56

7.5x+7y=52

5x+2y=22

8.5x+5y=65

7x+7y=203

9.8x+4y=56

x+4y=21

4x+7y=95

19.9x+2y=38

3x+6y=18

20.5x+5y=45

7x+9y=69

21.8x+2y=28

7x+8y=62

22.x+6y=14

3x+3y=27

23.7x+4y=67

2x+8y=26

24.5x+4y=52

7x+6y=74

25.7x+y=9

4x+6y=16

26.6x+6y=48

6x+3y=42

27.8x+2y=16

7x+y=11

28.4x+9y=77

8x+6y=94

29.6x+8y=68

7x+6y=66

30.2x+2y=22

7x+2y=47

x-7>26

3x<2x+1

2/3x>50

23.7x+4y=67

2x+8y=26

24.5x+4y=52

7x+6y=74

25.7x+y=9

4x+6y=16

26.6x+6y=48

6x+3y=42

27.8x+2y=16

7x+y=11

28.4x+9y=77

8x+6y=94

29.6x+8y=68

7x+6y=66

30.2x+2y=22

7x+2y=47

23.7x+4y=67

1.2x+9y=81

3x+y=34

2.9x+4y=35

8x+3y=30

3.7x+2y=52

7x+4y=62

4.4x+6y=54

9x+2y=87

5.2x+y=7

2x+5y=19

6.x+2y=21

3x+5y=56

7.5x+7y=52

5x+2y=22

8.5x+5y=65

7x+7y=203

9.8x+4y=56

x+4y=21

10.5x+7y=41

5x+8y=44

11.7x+5y=54

3x+4y=38

12.x+8y=15

4x+y=29

13.3x+6y=24

9x+5y=46

14.9x+2y=62

4x+3y=36

15.9x+4y=46

7x+4y=42

16.9x+7y=135

4x+y=41

17.3x+8y=51

x+6y=27

18.9x+3y=99

4x+7y=95

19.9x+2y=38

3x+6y=18

20.5x+5y=45

7x+9y=69

21.8x+2y=28

7x+8y=62

22.x+6y=14

3x+3y=27

23.7x+4y=67

2x+8y=26

24.5x+4y=52

7x+6y=74

25.7x+y=9

4x+6y=16

26.6x+6y=48

6x+3y=42

27.8x+2y=16

7x+y=11

28.4x+9y=77

8x+6y=94

29.6x+8y=68

7x+6y=66

30.2x+2y=22

7x+2y=47

相關詞條

相關搜尋

熱門詞條

聯絡我們