基本簡介
蟹狀星雲位於金牛座,距離地球大約6500光年,大小約為12×7光年,亮度是8.5星等,肉眼看不見。對蟹狀星雲最早的記錄出自英國的一個天文愛好者(1731年),1771年法國天文學家梅西耶在製作著名的“星雲星團(M)表”時,把第一號的位置,留給了蟹狀星雲,編號為M1。蟹狀星,就是蟹狀星雲(M1,或NGC1952)位於金牛座ζ星東北面,距地球約6500光年。它是個超新星殘骸,源於一次超新星(天關客星,SN1054)爆炸。氣體總質量約為太陽的十分之一,直徑六光年,現正以每秒一千公里速度膨漲。星雲中心有一顆直徑約十公里的脈衝星。這超新星爆發後剩下的中子星是在1969年被發現。其自轉周期為33毫秒(即每秒自轉30次)。1892年美國天文學家拍下了蟹狀星雲的第一張照片,30年後天文學家在對比蟹狀星雲以往的照片時,發現它在不斷擴張,速度高達1100公里/秒,於是人們便對蟹狀星雲的起源發生了興趣。由於蟹狀星雲擴張的速度非常快,於是天文學家便根據這一速度反過來推算它形成的時間,結果得出一個結論:在900多年前,蟹狀星雲很可能只有一顆恆星的大小。因此1928年美國天文學家哈勃首次把它與超新星拉上了關係,認為蟹狀星雲是公元1054年超新星爆發後留下的遺蹟。
記錄歷史
根據中國歷史記載,在現 在蟹狀星雲的那個位置上,曾經有過超新星爆發,那就是1054年7月4日(宋仁宗至和元年的五月己丑)大約寅時出現的、特亮的天關星“天關客星”。天關客星
中國宋朝司天監對那次爆發作出過觀測,史料中有以下記載:
“己丑,客星出天關之東南可數寸。嘉祐元年三月乃沒。”
《宋史·天文志》:“宋至和元年五月己丑,客星出天關東南可數寸,歲余稍末。” 《宋史·仁宗本紀》:“嘉祐元年三月辛未,司天監言:自至和元年五月,客星晨出東方,守天關,至是沒。”
《宋會要》:“嘉佑元年三月,司天監言:‘客星沒,客去之兆也’。初,至和元年五月,晨出東方,守天關。晝如太白,芒角四出,色赤白,凡見二十三日。”
總括以上文字,可得知在“宋至和元年五月己丑”(即1054年7月4日)開始,有“客星”出現在天關(即金牛座ζ星)附近,星的顏色是赤白。在最初的23天,即使在白晝,其光度如“太白”(即金星)。直至一年多後的“嘉祐元年三月辛未”(即1056年4月5日)才消失不見。
這個客星真是一個“不速之客”,來了就不走。在23天的時間裡,像太白金星一樣亮,白天都可以看到,即所謂“晝見如太白”“凡見二十三日”。客星看不到的日期是1056年4月6日,距離客星出現的日期1054年7月4日已經整整過了643天。在這將近兩年的時間裡,只要能看到客星。司天監的人員總是堅持不懈地進行觀測,他們詳細地記錄了客星的位置、顏色和亮度變化。這些詳細的觀測資料雖然大部分已經遺失,但僅是這流傳下來的簡短記載,已經使後人敬佩不已了。
星雲介紹
研究歷史
蟹狀星雲還是強紅外源、紫外源、X射線源和γ射線源。它的總輻射光度的量級比太陽強幾萬倍。1968年發現該星雲中的射電脈衝星,它的脈衝周期是0.0331秒,為已知脈衝星中周期最短的一個。目 前已公認,脈衝星是快速自鏇的中子星,有極強的磁性,是超新星爆發時形成的坍縮緻密星。蟹狀星雲脈衝星的質量約為一個太陽質量,其發光氣體的質量也約達一個太陽質量,可見該星雲爆發前是質量比太陽大若干倍的大天體。星雲距離約6300光年,星雲大小約12光年×7光年。公元1054年7月4日(宋仁宗至和元年五月二十六日)《宋史·天文志》記載:“客星出天關東南可數寸,歲余稍末”;《宋會要》中記載:“嘉祐元年三月,司天監言:‘客星沒,客去之兆也’。初,至和元年五月,晨出東方,守天關,晝見如太白,芒角四出,色赤白,凡見二十三日”。這是關於一顆超新星的記載,它的殘骸,就是我們現看到的蟹狀星雲。
1888年出版《星雲星團新總表》列為NGC1952,《梅西耶星團星雲表》中列第一,代號M1。蟹狀星雲的名稱是英國天文愛好者羅斯命名的。M1是最著名的超新星殘骸。這顆位於金牛座的超新星爆發當時估計其絕對星等達到了-6等,[註:絕對星等---假設天體在一個標準距離遠處---32.6光年的亮度,太陽的絕對星等為4.8]相當於滿月的亮度,它的實際光度比太陽高5億倍,在白天也能看到,給當時的人們留下了極深刻的印象。不僅如此,它的遺蹟星雲至今的輻射也比太陽大,射電觀測發現它的輻射強度和波長之間的關係不能用黑體輻射定律解釋,要發射這樣強的無線輻射,它的溫度要在50萬度以上,對一個擴散的星雲來說,這是不可能的,前蘇聯天文學家什克洛夫斯基1953年提出,蟹狀星雲的輻射不是由於溫度升高產生的,而是由“同步加速輻射”的機製造成的。這個解釋已得到證實。蟹狀星雲中央脈衝星的發現,獲得了1974年的“諾貝爾物理獎”,它是1982年前發現的周期最短的脈衝星,只有0.033秒,並且直到現在,能夠在所有電磁波段上觀察到脈衝現象的只有它和另一顆很難觀測的脈衝星。這顆高速自鏇的脈衝星證明了30年代對中子星的預言,肯定了一種恆星演化理論:超新星爆發時,氣體外殼被拋射出去,形成超新星遺蹟,就象蟹狀星雲,而恆星核心卻迅速坍縮,由恆星質量決定它的歸宿是顆白矮星或是中子星或是黑洞。中子星內部沒有熱核反應,但它的能量卻又大的驚人,比太陽大幾十萬倍,這樣大的能量消耗,靠的是自轉速度的變慢,即動能的減少來補償,才能符合能量守恆定律。第一個被觀測到的自轉周期變長的中子星,恰好是M1中的中子星。總之,人類對蟹狀星雲的研究占了當代天文學研究的很大比重,也的確得到了相當比重的研究成果。
相關簡史
1054年 中國古代天文學家最早發現天關客星。1731年 英國醫生、天文愛好者拜維斯發現蟹狀星雲。
1758年 梅西葉將蟹狀星雲排在他所編的星雲表第1號,稱為M1。
1850年 羅斯取名“蟹狀星雲”。
1910年 蘭姆蘭德首先注意到“束條”結構。
1921年 蘭姆蘭德和鄧肯彼此獨立地發現蟹狀星雲在膨脹。
1928年 哈勃測量出蟹狀星雲的膨脹速度,由此斷定它是中國發現的天關客星的遺蹟。
1948年 射電觀測發現它是一個強射電源。
1953年 史克洛夫斯基提出蟹狀星雲的射電輻射機制是同步加速輻射,很快被光學偏振觀測所證實。
1957年 射電偏振觀測成功。
1963年 發現蟹狀星雲是一個X射線源。
1964年 中心附近發現了一個緻密源。
1968年 發現蟹狀星雲是一個γ射線源。
1968年 發現蟹狀星雲脈衝星NP0532(統一名稱PSR 0531+21)。
1969年 發現NP0532同時是一顆光學脈衝星。
基本數據
位置:赤經5時31分5秒,赤緯21°59′ 銀經184°,銀緯—6°。說明:在銀河系裡比太陽離銀心更遠些,在銀道面之下200秒差距。距離:1930秒差距或6300光年
大小:8.8光年×12.8光年。說明:可以並排放下8.6×10000000個太陽或10000個太陽系。
質量:中心星0.5~1.5個太陽質量,電離氣體0.6~3個太陽質量,中性氣體(纖維中心)可能1.5~幾個太陽質量,總質量2~3個太陽質量或3.98~5.97×10的27次方噸。說明:總質量的可能範圍1~10個太陽質量。
膨脹速度:1450公里/秒。說明:不同人測得的結果有所不同
天體構造
絢麗多彩的蟹狀星雲日前引起了天文學家們的濃厚興趣:位於其中心部位的脈衝射電源有可能是迄今為止人類發現的首個具有四個磁極的天體構造。通常情況下,宇宙中的脈衝射電源都只擁有一對磁極——北極和南極。但美國新墨西哥理工學院的提姆·漢金斯和吉恩·埃雷克等人卻發現,傳統的雙磁極理論根本無法解釋蟹狀星雲中脈衝射電源的活動情況。漢金斯表示,由於存在著多個磁極相互作用的現象,蟹狀星雲中射電源的磁場受到了明顯的扭曲。
科學家們介紹說,在浩瀚的宇宙中,絕大多數脈衝射電源都只產生一種脈衝,而有少部分除了一個主脈衝外還擁有另外一個次脈衝--後者被稱為“中間脈衝”。專家們認為,每一種脈衝都會對應兩個磁極,它們的關係就像是一對密不可分的朋友。然而漢金斯和埃雷克卻發現,蟹狀星雲中的脈衝射電源卻完全與眾不同——其主脈衝短暫而強烈,“中間脈衝”持續的時間很長,功率卻很弱。
除此之外,這一“中間脈衝”所發出的無線電輻射也與其他脈衝射電源的完全不同。另一位美國科學家保羅·弗里埃爾在分析了漢金斯等人的研究成果後指出,在蟹狀星雲中發現的“中間脈衝”所產生的輻射極其特別,此前還從未碰到過類似的情況。
根據漢金斯提出的觀點,導致“中間脈衝”輻射異常的原因可能是因為存在著第三個磁極。或許,第三個磁極是在脈衝射電源形成的過程中出現的。至於上述過程是如何發展的還有待於進一步的研究。
漢金斯補充說,蟹狀星雲中的脈衝射電源應該還擁有第四個磁極--因為所有的磁極都是成對出現的。