聚變

聚變

聚變所屬現代詞,指的是由質量小的原子,比方說氘和氚,在一定條件下(如超高溫和高壓),發生原子核互相聚合作用,生成中子和氦-4,並伴隨著巨大的能量釋放的一種核反應形式。

簡介

原子核-內部結構模型圖原子核-內部結構模型圖

聚變 子核中蘊藏巨大的能量。根據質能方程E=mc²,原子核之靜質量變化(反應物與生成物之質量差)造成能量的釋放。如果是由重的原子核變化為輕的原子核,稱為核裂變,如核子彈爆炸;如果是由較輕的原子核變化為較重的原子核,稱為核聚變,如恆星持續發光發熱的能量來源。

相比核裂變,核聚變的放射性污染等環境問題少很多。如氘和氚之核聚變反應,其原料可直接取自海水,來源幾乎取之不盡,因而是比較理想的能源取得方式。

目前人類已經可以實現不受控制的核聚變,如氫彈的爆炸。但是要想能量可被人類有效利用,必須能夠合理的控制核聚變的速度和規模,實現持續、平穩的能量輸出;而觸發核聚變反應必須消耗能量,因此人工核聚變的能量與觸發核聚變的能量要到達一定的比例才能有經濟效應。科學家正努力研究如何控制核聚變,但是現在看來還有很長的路要走。目前主要的幾種可控制核聚變方式:超音波核聚變、雷射約束(慣性約束)核聚變、磁約束核聚變(托卡馬克)。


原子核-內部結構模型表原子核-內部結構模型表

反應

除了重原子核鈾235鈽239等的裂變能釋放核能外,還有另一種核反應,即輕原子核()結合成較重的原子核(氦)時也能放出巨大能量。核聚變的原理是:在標準的地面溫度下,物質的原子核彼此靠近的程度只能達到原子的電子殼層所允許的程度。因此,原子相互作用中只是電子殼層相互影響。帶有同性正電荷的原子核間的斥力阻止它們彼此接近,結果原子核沒能發生碰撞而不發生核反應。要使參加聚變反應的原子核必須具有足夠的動能,才能克服這一斥力而彼此靠近。提高反應物質的溫度,就可增大原子核動能。因此,聚變反應對溫度極其敏感,在常溫下其反應速度極小,只有在1400萬到1億度的絕對溫度條件下,反應速度才能大到足以實現自持聚變反應。所以這種將物質加熱至特高溫所發生的聚變反應叫作熱核反應,由此做成的聚變武器也叫熱核武器。要得到如此高溫高壓,只能由裂變反應提供。

材料

核聚變反應一般只能在輕元素的原子核之間發生,如氫的同位素氘和氚,它們原子核間的靜電斥力最小,在相對較低的溫度(近千萬攝氏度)即可激發明顯的聚變反應生成氦,而且反應釋放出的能量大,一千克聚變反應裝藥放出的能量約為核裂變的七倍。但在熱核武器中不是使用在常溫下呈氣態的氘和氚。氘採用常溫下是固態化合物的氘化鋰,而氚則由核武器進行聚變反應過程中由中子轟擊鋰的同位素而產生。1942年,美國科學家在研製核子彈過程中,推斷核子彈爆炸提供的能量有可能點燃輕核引起聚變,並以此製造威力比核子彈更大的超級彈。1952年1月,美國進行了世界上首次代號“邁克”的氫彈原理試驗,爆炸威力超過1000萬噸當量,但該裝置以液態氘作熱核材料連同貯存容器和冷卻系統重約65噸,不能作為武器使用,直到固態氘化鋰作為熱核裝料的試驗成功,氫彈的實際套用才成為可能。中國於1966年12月28日成功進行了氫彈原理試驗,1967年6月17日由飛機空投的300萬噸級氫彈試驗圓滿成功。

相關詞條

相關搜尋

熱門詞條

聯絡我們