置換[數學術語]

置換[數學術語]
更多義項 ▼ 收起列表 ▲

置換的廣義概念在不同語境下有不同的形式定義:

在集合論中,一個集合的置換是從該集合映至自身的雙射;在有限集的情況,便與上述定義一致。

在組合數學中,置換一詞的傳統意義是一個有序序列,其中元素不重複,但可能有闕漏。例如1,2,4,3可以稱為1,2,3,4,5,6的一個置換,但是其中不含5,6。此時通常會標明為“從n個對象取r個對象的置換”。

抽象代數

在集合論與抽象代數等領域中,“置換”一詞被保留為集合(通常是有限集)到自身的雙射的一個稱呼。例如對於從一到十的數字構成的集合,其置換將是從集合到自身的雙射。一個集合上的置換在函式合成運算下構成一個群,稱為對稱群或置換群。

表示法

由於元素的有限集可以一一對應到集合,有限集的置換可以化約到形如 {1, ..., n} 的集合之置換。此時有兩種表示法。

第一,利用矩陣符號將自然排序寫在第一列,而將置換後的排序寫在第二列。

第二,藉由置換的相繼作用描述,這被稱為“輪換分解”。

特殊置換

長度等於二的輪換稱為 換位,這種輪換是將元素交換,並保持其它元素不變。對稱群可以由換位生成。

輪換長度為偶數的輪換稱為 偶輪換,反之則為 奇輪換;由此可定義任一置換的奇偶性,並可證明:一個置換是偶置換的充要條件是它可以由偶數個換位生成。偶輪換在置換群中構成一個正規子群,稱為交錯群。

計算理論中的置換

在計算機學科中,賦值/代入的差別表明函式式編程與指令式編程之差異。純粹的函式式編程並不提供賦值機制。現今數學的慣例是將置換看作函式,其間運算看作函式合成,函式式編程也類似。就賦值語言的觀點,一個代入是將給定的值“同時”重排,這是個有名的問題。

置換圖

置換[數學術語] 置換[數學術語]

(2,5,1,4,3,6)的置換圖 取一個無向圖G,將圖G的n個頂點標記v,...,v,對應一個置換( s(1) s(2) ... s(n) ),若且唯若s(i) < s(j) 而i>j,則圖的v和v相連,這樣的圖稱為置換圖。

置換圖的補圖必是置換圖。

使用計算機

多數計算機都有個計算置換數的nPr鍵。然而此鍵在一些最先進的桌上型機種中卻被隱藏了。例如:在 TI-83 中,按 MATH、三次右鍵、再按二。在卡西歐的圖形計算機中,按 OPTN,一次右鍵(F6)、PROB(F3)、nPr(F2)。

試算表語法

多數試算表軟體都有函式 PERMUT(Number,Number chosen),用以計算置換。Number是描述物件數量的一個整數,Number chosen是描述每個置換中取物件數的整數。

相關詞條

熱門詞條

聯絡我們