基本介紹
總體均值又叫做總體的數學期望或簡稱期望,是描述隨機變數取值平均狀況的數字特徵 。
離散型隨機變數的總體均值
![總體均值](/img/1/036/wZwpmL3QzM5YjNzMjM0EDN0UTMyITNykTO0EDMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![總體均值](/img/1/93d/wZwpmLyIzMyYjM3ETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzL0gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設離散型隨機變數 的可能取值是 ,取這些值的相應機率為
![總體均值](/img/e/3e2/wZwpmLxATO1cjM1MDOzYTN1UTM1QDN5MjM5ADMwAjMwUzLzgzL2UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![總體均值](/img/1/f5a/wZwpmLyQzN3czM5ADNxUTN1UTM1QDN5MjM5ADMwAjMwUzLwQzLzIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![總體均值](/img/1/036/wZwpmL3QzM5YjNzMjM0EDN0UTMyITNykTO0EDMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
若 絕對收斂,則 稱為隨機變數的總體均值。記作
![總體均值](/img/8/18b/wZwpmLwYDNwEjNzkDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL5gzL1EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
連續型隨機變數的總體均值
![總體均值](/img/1/036/wZwpmL3QzM5YjNzMjM0EDN0UTMyITNykTO0EDMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![總體均值](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![總體均值](/img/6/032/wZwpmLyIzN4kDO1kDM0YTN1UTM1QDN5MjM5ADMwAjMwUzL5AzLwQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![總體均值](/img/1/036/wZwpmL3QzM5YjNzMjM0EDN0UTMyITNykTO0EDMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![總體均值](/img/1/b2d/wZwpmL3EjMyATN2YzNzYTN1UTM1QDN5MjM5ADMwAjMwUzL2czL2QzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
設連續型隨機變數 的分布密度是 ,若積分 絕對收斂,則稱該積分為總體 的均值,記作 。
總體均值的基本性質
總體均值具有以下基本性質:
![總體均值](/img/e/626/wZwpmL2ADN3czMzAzNxUTN1UTM1QDN5MjM5ADMwAjMwUzLwczL0EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
①對任意常數c,均有 ;
![總體均值](/img/f/88a/wZwpmLzUTOwIjN4ITM0YTN1UTM1QDN5MjM5ADMwAjMwUzLyEzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
② ,其中c為任意常數;
![總體均值](/img/5/9e6/wZwpmL1gDO4gTO3ETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzL2YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
③ ,其中c為任意常數;
![總體均值](/img/c/712/wZwpmL4UDM5kDM1kDM0YTN1UTM1QDN5MjM5ADMwAjMwUzL5AzL4IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![總體均值](/img/d/07d/wZwpmL3IDOxkDNzMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzL1MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
④ ,其中 為任意常數;
![總體均值](/img/0/0e0/wZwpmLyUzMygzMwgDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL4gzLyMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
⑤對於兩個隨機變數x和y,有 ;
![總體均值](/img/c/030/wZwpmLzgTM3IjN0YTOzYTN1UTM1QDN5MjM5ADMwAjMwUzL2kzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
⑥若兩個隨機變數x和y相互獨立,則有 。
基本性質⑤、⑥可以推廣到有限個的情況,這就是:n個隨機變數和的均值等於均值的和;n個隨機變數若相互獨立,則乘積的均值等於均值的乘積。這時n為有限整數且大於2 。
總體均值的點估計
![總體均值](/img/4/055/wZwpmL3gzNzYTO1cjN1IDN0UTMyITNykTO0EDMwAjMwUzL3YzL2YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![總體均值](/img/d/f35/wZwpmLzITO5gDM2gzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4czL4czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![總體均值](/img/d/f35/wZwpmLzITO5gDM2gzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4czL4czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
參數估計就是以樣本統計量來估計總體參數,例如,用樣本平均數估計總體平均數,用樣本成數估計總體成數,等等。在參數估計中,用來估計總體參數 的樣本統計量 ,稱為 估計量。例如,樣本平均數、樣本成數、樣本方差等。用來估計總體參數時計算出來的估計量的具體數值 ,稱為 估計值。例如,要估計一個班級考試的平均分數,現從中抽取一個隨機樣本,經過計算得到樣本平均分數為80分,那么這個80分就是估計值。
參數估計的方法有 點估計和 區間估計。
點估計就是直接以樣本統計量作為總體參數的估計量,又稱為 定值估計。例如,以樣本平均數、樣本成數、樣本方差作為相應總體參數的估計量,即
![總體均值](/img/2/68a/wZwpmLwITOzgDO5AzNxUTN1UTM1QDN5MjM5ADMwAjMwUzLwczLyczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
總體均值的區間估計
方差已知時總體均值的區間估計
![總體均值](/img/8/f7d/wZwpmLyQjMxczN1YDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL2gzLzczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![總體均值](/img/c/60b/wZwpmL4gjN4UDMygjNzYTN1UTM1QDN5MjM5ADMwAjMwUzL4YzLwQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
若總體服從常態分配,則樣本均值 ;若總體不服從常態分配,但當樣本容量n足夠大時,則 。進一步可得 :
![總體均值](/img/f/3f1/wZwpmL1YDO3IDOzMTOzYTN1UTM1QDN5MjM5ADMwAjMwUzLzkzLwMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![總體均值](/img/0/92c/wZwpmL3AzM1UzMyEDMyADN0UTMyITNykTO0EDMwAjMwUzLxAzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![總體均值](/img/5/f41/wZwpmLzcjN2czM2gDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL4gzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
給定顯著性水平 ,查標準常態分配表可得到臨界值 ,且滿足:
![總體均值](/img/2/e04/wZwpmL0MjN1UzNwgDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL4gzLzQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![總體均值](/img/6/129/wZwpmL1gzN4cTOxgjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
則在置信水平 下總體均值的區間估計為
![總體均值](/img/8/1fd/wZwpmL0YDO5cjMxczNzYTN1UTM1QDN5MjM5ADMwAjMwUzL3czLyczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![總體均值](/img/5/9c2/wZwpmL4UzN3UTN0gTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL4EzLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![總體均值](/img/4/fd9/wZwpmL3czM3EDO5ITOzYTN1UTM1QDN5MjM5ADMwAjMwUzLykzLzIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![總體均值](/img/2/145/wZwpmLzMDO1QTN2AzNzYTN1UTM1QDN5MjM5ADMwAjMwUzLwczL3IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![總體均值](/img/6/129/wZwpmL1gzN4cTOxgjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
反過來,設總體均值的抽樣允許誤差為 ,即 ,且區間估計 的置信水平為 ,則有
![總體均值](/img/d/20b/wZwpmLycTOyAzNzADOzYTN1UTM1QDN5MjM5ADMwAjMwUzLwgzLwczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![總體均值](/img/5/f41/wZwpmLzcjN2czM2gDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL4gzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![總體均值](/img/6/129/wZwpmL1gzN4cTOxgjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![總體均值](/img/6/129/wZwpmL1gzN4cTOxgjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![總體均值](/img/5/f41/wZwpmLzcjN2czM2gDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL4gzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![總體均值](/img/0/92c/wZwpmL3AzM1UzMyEDMyADN0UTMyITNykTO0EDMwAjMwUzLxAzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![總體均值](/img/5/f41/wZwpmLzcjN2czM2gDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL4gzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![總體均值](/img/5/f41/wZwpmLzcjN2czM2gDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL4gzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
臨界值 與置信水平 一一對應。給定一個置信水平 ,可以通過查 標準正態 分布表確定臨界值 。若置信水平提高,即區間估計的可靠程度增大,則 減小,即臨界值 增大。反之,若置信水平減小,則臨界值減小。臨界值 稱為機率度,用符號z表示,用以間接地衡量區間估計的機率大小。
![總體均值](/img/5/9c2/wZwpmL4UzN3UTN0gTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL4EzLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![總體均值](/img/0/f74/wZwpmL4MjN1ATNxkTOzYTN1UTM1QDN5MjM5ADMwAjMwUzL5kzL1UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
易見,抽樣允許誤差 、抽樣平均誤差 和機率度z三者存在如下關係:
![總體均值](/img/8/12a/wZwpmL3IDM2QjNxcjNzYTN1UTM1QDN5MjM5ADMwAjMwUzL3YzLwUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![總體均值](/img/6/129/wZwpmL1gzN4cTOxgjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
給定置信水平 ,在重複抽樣條件下,總體均值的置信區間為
![總體均值](/img/3/1b0/wZwpmL4YDNyQzN0MDOxUTN1UTM1QDN5MjM5ADMwAjMwUzLzgzL1MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
在不重複抽樣條件下,總體均值的置信區間為
![總體均值](/img/c/ef7/wZwpmL3UDO5cjMxADM0YTN1UTM1QDN5MjM5ADMwAjMwUzLwAzLyAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
方差未知時總體均值的區間估計
若總體服從常態分配但總體方差未知,則可用樣本標準差s代替總體標準差s構造統計量,即得
![總體均值](/img/a/915/wZwpmLwQzN5IjN2cjNzYTN1UTM1QDN5MjM5ADMwAjMwUzL3YzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![總體均值](/img/6/129/wZwpmL1gzN4cTOxgjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
給定置信水平 ,在重複抽樣條件下,總體均值的置信區間為
![總體均值](/img/d/9be/wZwpmL1EzMxIzN4cDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL3gzL0IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
類似地,在不重複抽樣條件下,總體均值的置信區間為
![總體均值](/img/3/d17/wZwpmLxUDM1MDNwEDOzYTN1UTM1QDN5MjM5ADMwAjMwUzLxgzLxMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![總體均值](/img/d/f6e/wZwpmL3EzN3kjM3UDM0YTN1UTM1QDN5MjM5ADMwAjMwUzL1AzL1czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![總體均值](/img/5/f41/wZwpmLzcjN2czM2gDOzYTN1UTM1QDN5MjM5ADMwAjMwUzL4gzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![總體均值](/img/d/f6e/wZwpmL3EzN3kjM3UDM0YTN1UTM1QDN5MjM5ADMwAjMwUzL1AzL1czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
查t分布表可得到臨界值 。在大樣本情況下,t分布近似於標準常態分配。所以,此時也可以用標準常態分配臨界值 代替 。