立體集合

立體幾何
數學上,立體幾何(solid geometry)是3維歐氏空間的幾何的傳統名稱— 因為實踐上這大致上就是我們生活的空間。一般作為平面幾何的後續課程。立體測繪(Stereometry)處理不同形體的體積的測量問題:圓柱,圓錐, 圓台, 球, 稜柱,稜錐等等。
畢達哥拉斯學派就處理過球和正多面體,但是稜錐,稜柱,圓錐和圓柱在柏拉圖學派著手處理之前人們所知甚少。
尤得塞斯(Eudoxus)建立了它們的測量法,證明錐是等底等高的柱體積的三分之一,可能也是第一個證明球體積和其半徑的立方成正比的。

立體幾何基本課題
包括:
- 面和線的重合
- 兩面角和立體角
- 方塊, 長方體, 平行六面體
- 四面體和其他稜錐
- 稜柱
- 八面體, 十二面體, 二十面體
- 圓錐,圓柱
- 球
- 其他二次曲面: 迴轉橢球, 橢球, 拋物面 ,雙曲面
公理
立體幾何中有4個公理
公理1 如果一條直線上的兩點在一個平面內,那么這條直線在此平面內.
公理2 過不在一條直線上的三點,有且只有一個平面.
公理3 如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.
公理4 平行於同一條直線的兩條直線平行.
立方圖形
立體幾何公式
名稱 符號 面積S 體積V
正方體 a——邊長 S=6a^2 V=a^3
長方體 a——長 S=2(ab+ac+bc) V=abc
b——寬
c——高
稜柱 S——底面積 V=Sh
h——高
稜錐 S——底面積 V=Sh/3
h——高
稜台 S1和S2——上、下底面積 V=h[S1+S2+√(S1^2)/2]/3
h——高
擬柱體 S1——上底面積 V=h(S1+S2+4S0)/6
S2——下底面積
S0——中截面
h——高
圓柱 r——底半徑 C=2πr V=S底h=Πrh
h——高
C——底面周長
S底——底面積 S底=πR^2
S側——側面積 S側=Ch
S表——表面積 S表=Ch+2S底
S底=πr^2
空心圓柱 R——外圓半徑
r——內圓半徑
h——高 V=πh(R^2-r^2)
直圓錐 r——底半徑
h——高 V=πr^2h/3
圓台 r——上底半徑
R——下底半徑
h——高 V=πh(R^2+Rr+r^2)/3
球 r——半徑
d——直徑 V=4/3πr^3=πd^2/6
球缺 h——球缺高
r——球半徑
a——球缺底半徑 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3
球檯 r1和r2——球檯上、下底半徑
h——高 V=πh[3(r12+r22)+h2]/6
圓環體 R——環體半徑
D——環體直徑
r——環體截面半徑
d——環體截面直徑 V=2π^2Rr^2 =π^2Dd^2/4
桶狀體 D——桶腹直徑
d——桶底直徑
h——桶高 V=πh(2D^2+d2^)/12 (母線是圓弧形,圓心是桶的中心)
V=πh(2D^2+Dd+3d^2/4)/15 (母線是拋物線形)
註:初學者會認為立體幾何很難,但只要打好基礎,立體幾何將會變得很容易。學好立體幾何最關鍵的就是建立起立體模型,把立體轉換為平面,運用平面知識來解決問題,立體幾何在高考中肯定會出現一道大題,所以學好立體是非常關鍵的。

相關詞條

相關搜尋

熱門詞條

聯絡我們