機率論教程

《機率論教程:英文版(第3版)》是一本享譽世界的經典機率論教材。由機械工業出版社出版。

基本信息

內容簡介

《機率論教程:英文版(第3版)》是一本享譽世界的經典機率論教材,令眾多讀者受益無窮。自出版以來。已被世界75%以上的大學的數萬名學生使用。《機率論教程:英文版(第3版)》內容豐富,邏輯清晰,敘述嚴謹。不僅可以拓展讀者的視野。而且還將為其後續的學習和研究打下堅實基礎。此外,《機率論教程:英文版(第3版)》的習題較多,都經過細心的遴選,從易到難,便於讀者鞏固練習。本版補充了有關測度和積分方面的內容,並增加了一些習題。

作者簡介

KaiLaiChung(鍾開萊,1917-2009)華裔數學家、機率學家。浙江杭州人。1917年生於上海。1936年考入清華大學物理系。1940年畢業於西南聯合大學數學系,之後任西南聯合大學數學系助教。1944年考取第六屆庚子賠款公費留美獎學金。1945年底赴美國留學。1947年獲普林斯頓大學博士學位。20世紀50年代任教於美國紐約州Syracuse大學,60年代以後任史丹福大學數學系教授、系主任、名譽教授。鍾開萊著有十餘部專著。為世界公認的20世紀後半葉“機率學界學術教父”。

目錄

Index

Preface to the third editioniii

Preface to the second editionv

Preface to the first editionvii

1 Distribution function

1.1 Monotone functionsl

1.2 Distribution functions

1.3 Absolutely continuous and singular distributions

2 Measure theory

2.1 Classes of sets

2.2 Probability measures and their distribution functions

3 Random variable. Expectation. Independence

3.1 General definitions

3.2 Properties of mathematical expectation

3.3 Independence

4 Convergence concepts

4.1 Various modes of convergence

4.2 Almost sure convergence; Borel-Cantelli lemma

4.3 Vague convergence

4.4continuation

4.5 Uniform integrability; convergence of moments

5 Law of large numbers. Random series

5.1 Simple limit theorems

5.2 Weak law of large numbers

5.3 Convergence of series

5.4 Strong law of large numbers

5.5 Applications

Bibliographical Note

6 Characteristic function

6.1 General properties; convolutions

6.2 Uniqueness and inversion

6.3 Convergence theorems

6.4 Simple applications

6.5 Representation theorems

6.6 Multidimensional case; Laplace transforms

Bibliographical Note

7 Central limit theorem and its ramifications

7.1 Liapounov's theorem

7.2 Lindeberg-FeUer theorem

7.3 Ramifications of the central limit theorem

7.4 Error estimation

7.5 Law of the iteratedlogarithm

7.6 Infinite divisibility

Bibliographical Note

8 Random walk

8.1 Zero-or-one laws

8.2 Basic notions

8.3 Recurrence

8.4 Fine structure

8.5 Continuation

Bibliographical Note

9 Conditioning. Markov property. Martingale

9.1 Basic properties ofconditionalexpectation3 l

9.2 Conditional independence; Markov property

9.3 Basic properties of smartingales

9.4 Inequalities and convergence

9.5 Applications

Bibliographical Note

Supplement: Measure and Integral

1 Construction of measure

2 Characterization of extensions

3 Measures in R

4 Integral

5 Applications

General Bibliography

相關詞條

相關搜尋

熱門詞條

聯絡我們