教育背景
博士, 清華大學化工系, 1998. 博士, McGill University,冶金材料工程系, 2002-2006
研究員, University of Ottawa, 1999-2001.
研究員, McGill University, 2001-2002.
研究方向
過程濕法冶金(Process Hydrometallurgy)
工業沉澱結晶(Industrial Crystallization and Precipitation)
鹽湖及冶金溶液體系熱力學(Thermodynamics of Salt Lake and Metallurgical Systems)
過程濕法冶金(Process Hydrometallurgy)
濕法冶金是將礦石、經選礦富集的精礦或其他原料與水溶液或者其他液體相接觸,通過化學反應等,使原料中所含有的金屬轉入液相,再對液相中所含有各種有用金屬進行分離富集,最後以金屬或者其他化合物的形式加以回收的方法。濕法冶金以無機化學和物理化學等理論學科為基礎,主要套用領域包括浸取,富集和淨化,金屬回收。本課題組研究方向是低品位礦物浸取包括低品位鋁土礦和鉬精礦等,浸取採用包括原位浸取、堆浸取、和容器浸取等方式,利用酸、鹼、加壓手段,將鋁土礦、輝鉬礦中的矽脫除,使鋁土礦中的鋁矽比由4:1~5:1提高到10:1以上,使輝鉬礦純度提高到98%。
工業沉澱結晶(Industrial Crystallization and Precipitation)
結晶沉澱是化學工藝中的基本過程,化學工業採用結晶沉澱生產的產品占到總固體產品的70%。結晶沉澱由於操作條件上的低溫低能耗和產品上的純度高,常用於分離和淨化。操作條件決定著結晶產品的性質包括純度、過濾性能、流動性、反應性能等,要得到性能優異的產品就需要掌握結晶過程中過飽和度的控制、成核、晶體生長、陳化以及二次成核等方面的知識與方法。本課題研究的結晶過程包括碳酸鎂水合物的沉澱過程及氯化銨的結晶過程,通過建立沉澱結晶過程的數學模型和結晶器流體流動模型,提出一套用於反應結晶器設計、放大和最佳化的方法。
鹽湖及冶金溶液體系熱力學(Thermodynamics of Salt Lake and Metallurgical Systems)
鹽湖和冶金溶液體系熱力學的汽液平衡、液液平衡和固液平衡研究是工藝設計開發和模擬最佳化的基礎。課題組利用化工熱力學模型(如Pitzer,Electrolyte-NRTL,UNIFAC等)和化工軟體(如Aspen Plus, OLI software),對實驗室測得的少量實驗數據進行處理,得到相關的參數,從而計算出過程開發中大量的有用數據。課題組建立了鹽湖滷水和鋁土礦浸取體系熱力學模型,並建立了原創性表面張力模型。課題組開展含離子液體體系熱力學性質的研究並建立離子液體性質的熱力學模型,如採用硬球微擾理論來描述分子之間的排斥作用和色散吸引作用,採用基於平均球近似的積分方程理論來描述陰陽離子之間的靜電作用,建立了離子液體密度的熱力學模型。
近期發表論文:
1. Cheng Wenting; Li Zhibao . Controlled supersaturation precipitation of hydromagnesite for the MgCl2-Na2CO3 system at elevated temperatures: chemical modeling and experiment. Industrial & Engineering Chemistry Research. Inpress.
2. Ma Jiayu; Li Zhibao; Zhang Yi; George.P Demopoulos. Desilication of sodium aluminate solution by Friedel's salt(FS: 3CaO·A12O3·CaCl2·10H2O). Hydrometallurgy (2009), 3, 225-230.
3. Cheng Wenting; Li Zhibao. Precipitation of nesquehonite from homogeneous supersaturated solutions. Crystal Research Technology (2009) 9 , 937-947.
4. Cheng Wenting, Li Zhibao, George P. Demopoulos. Effects of Temperature on the Preparation of Magnesium Carbonate Hydrates by Reaction of MgCl2 with Na2CO3. Chinese Chemical Engineering Journal(2009), 4, 661-666.
5. Dong Mei; Li Zhibao; Mi Jianguo; Demopoulos GP. Solubility and stability of Nesquehonite (MgCO3·3H2O) in Mixed NaCl + MgCl2, NH4Cl + MgCl2, LiCl and LiCl + MgCl2 Solutions. Journal Chemical Engineering Data ( 2009),54, 3002–3007.
6. Dong Mei; Cheng Wenting; Li Zhibao;George.P Demopoulos. Solubility and Stability of Nesquehonite (MgCO3×3H2O) in NaCl, KCl, MgCl2, and NH4Cl Solutions. Journal Chemical Engineering Data(2008),53, 2586-2593.
7. Wang Yong; Li Zhibao; Demopoulos George P. Controlled precipitation of nesquehonite by the reaction of MgCl2 with (NH4)2CO3 at 303K. Journal of Crystal Growth(2008), 310,1220-1227.
8. Demopoulos, George P.; Li, Zhibao et al New Technologies for HCl Regeneration in Chloride Hydrometallurgy. Erzmatall(2008), 61(2) 89-98.
9. Liu, Yan; Li, Zhibao; Mi, Jianguo; Zhong, Chongli Modeling of Aqueous Electrolyte Solutions Based on Primitive and First-Order Mean Spherical Approximation. Industrial & Engineering Chemistry Research (2008), 47, 1695-1701.
10. Li, Zhibao; Demopoulos, George P. Speciation-Based Chemical Equilibrium Model of CaSO4 Solubility in the H + Na + Ca+ Mg + Al + Fe(II) + Cl + SO4 + H2O System. Industrial & Engineering Chemistry Research (2007), 46, 6385-6392.
11. Li, Zhibao; Demopoulos, George P. Model-Based Construction of Calcium Sulfate Phase-Transition Diagrams in the HCl-CaCl2-H2O System between 0 and 100 C. Industrial & Engineering Chemistry Research (2006), 45(13), 4517-4524.
12. Li, Zhibao; Demopoulos, George P. Development of an Improved Chemical Model for the Estimation of CaSO4 Solubilities in the HCl-CaCl2-H2O System up to 100 C. Industrial & Engineering Chemistry Research (2006), 45(9), 2914-2922.
13. Li, Zhibao; Demopoulos, George P. Effect of NaCl, MgCl2, FeCl2, FeCl3, and AlCl3 on Solubility of CaSO4 Phases in Aqueous HCl or HCl + CaCl2 Solutions at 298 to 353 K. Journal of Chemical & Engineering Data (2006), 51(2), 569-576.
14. Li, Zhibao; Demopoulos, George P. Solubility of CaSO4 Phases in Aqueous HCl + CaCl2 Solutions from 283 K to 353 K. Journal of Chemical and Engineering Data (2005), 50(6), 1971-1982.