人物經歷
2000年於中國科技大學化學系獲理學博士學位,畢業後留校工作。2002年-現在,於上海交通大學生命科學技術學院工作。2006年澳大利亞La Trobe大學學術交流訪問。現任國家重大科學儀器設備開發專項首席科學家和技術專家委員會副主任、通用電泳設備國家標準委員會委員、中國化學會有機與生化分析專業委員會委員、第七-第九全國微納生物化學分離分析會議學術委員會委員、TOACJ 期刊(Bentham Science Publishers Ltd出版)編委。2002年-現在,於上海交通大學生命科學技術學院工作。應邀為英國Analyst (IF=3.9)、Electrophoresis (IF=3.6)、Anal Bioanal. Chem (IF=3.8) 和Anal Chim Acta (IF=4.3)等國際主流期刊撰寫並發表評論性綜述和論文等,多次在國際會議做邀請報告,應邀為Anal. Chem., Biosen Bioelectr, Electrophoresis, J. Chromatogr. A, Analyist, Anal. Chim Acta, Talanta和J. Chromatogr. B等十多種國際主流學術期刊擔任特邀論文評議人。
主講課程
主講多門本科和研究生課程,包括《生物分離工程》、《生物分析化學》和《高等電泳與色譜技術》等。
研究方向
研究方向一:
重要生物技術一一電泳學新原理、新方法和套用研究。緊緊圍繞我們實驗室在國際上率先開拓的優勢方向,開展移動反應界面(MRB) (包括移動親和界面(MAB)、超分子界面(MSB)、中和反應界面(MNB)、絡合反應界面(MCB)和親和界面(MAB)等)新概念、新模型、新理論、新方法及其計算機模擬等的研究。
研究方向二:
製備性電泳分離技術的研究。結合重組蛋白分離純化存在問題、以及實驗室在自由流電泳(free-flow electrophoresis, FFE)和MRB等在國際上形成的技術優勢,開展FFE分離富集新原理、新設備、新方法、及其在多種生物物質(包括蛋白質、藥物、細胞、細胞器等)分離富集等方面的研究。
研究方向三:
雙向凝膠電泳2DE成套設備技術開發與套用的研究。圍繞生命科學重大研究需求,依託國家重大科學儀器設備開發專項,依靠實驗室在2DE核心技術和關鍵部件方面的突破,研製具有自主智慧財產權的2DE成套儀器與技術,加速我國電泳儀器的產業升級。
研究方向四:
對接國家社會民生的重大需求,圍繞重大疾病糖尿病等診斷問題,開發具有自主智慧財產權的糖尿病診斷新儀器、新技術和新試劑等,提升我國在糖尿病診斷等方面的技術與產業化水平,提高相關企業的核心競爭力。
主要貢獻
先後主持20多項科研項目,包括首批國家重大科學儀器設備開發專項1項(首席科學家)、國家自然科學基金重點項目1項、面上等課題6項、國家973重大基礎研究子課題1項、國家863重點支撐項目子課題1項、安徽省自然科學基金1項、衛生部課題1項、安徽省課題4項、橫向課題6項。主編教材2部,包括《生化分析技術》和《生物化學 儀器分析基礎》。先後在Anal Chem, J. Chromatogr A, Electrophoresis, Anal. Chim Acta, Talanta和J. Chromatogr. B等重要學術期刊發表論文90餘篇(其中SCI收錄論文70餘篇),近幾年獲得或申請國家發明專利10多項。
學術貢獻
1、提出了較系統的電泳學新概念、新理論和新方法——移動反應界面(MRB),包括親和反應界面、相互作用界面、中和反應界面、沉澱反應界面、絡合反應界面和氧化還原反應界面等,建立了一系列MRB的方法,驗證了MRB概念、理論和方法;
2、發展了系統的基於MRB的等電聚焦電泳(IEF)動力學理論,解決了50年來一直存在於IEF和2DE的五個基礎科學問題,合成了IEF和2DE關鍵部件,為IEF和2DE的進一步發展與套用奠定了重要基礎;
3、利用MRB,發展了多種毛細管電泳線上富集技術的理論和方法,並為其他富集技術的闡明提供了基礎;提出了大體積樣本同步富集分離的新理論和新方法,發展了基於MRB的離線電泳富集技術與裝置;
4、建立了基於MRB的電泳滴定原理、技術和方法,研製了國際上第一台MRB電泳滴定原始樣機,初步建立了蛋白質滴定的原理和技術,提出了基於MRB的電泳阻滯信號及其生化感測器的概念;
5、研製了國際上第一台重力自平衡-自由流電泳FFE裝置(包括大型、中型和晶片級FFE設備),研究了相關的進樣技術、區帶控制技術、重要生物物質(細胞、蛋白、酶和抗生素等)分離技術;
6、建立了多種MRB、毛細管區帶電泳(CZE)和自由流電泳(FFE)的數學模型和計算機模擬軟體等,利用計算機模擬結果揭示了經典電泳理論omega函式(具有100多年歷史)與MRB理論之間的關係。
開展課題
(1)雙向凝膠電泳2DE成套設備技術開發與套用 首批國家重大儀器專項
(2)基於MRB的複雜蛋白質分離分析新原理和新方法的研究 NSFC重點項目
(3)糖尿病診斷新儀器、新技術與關鍵部件研製 首批國家重大儀器專項
(4)微生物及其代謝物分離新電泳設備的研製與套用 科技部973重大研究計畫
(5)基於MRB的穩定、快速、高通量診斷儀器的研製 醫工(理)交叉重點基金
成果專利
No. 著作權/專利名稱 (狀態) 申請號/授權號
1 毛細管區帶電泳模擬軟體V1.0 (授權) 2007SR17276
2 移動絡合界面的模擬軟體V1.0 (授權) 2010SR016459
3 用於毛細管電泳的電動近樣符合管 (授權) Zl200410018026.5
4 用於自由流電泳的分離室緩衝分流裝置 (授權) Zl200510024412.x
5 用於自由流電泳的分離液自平衡連通收集裝置 (授權) Zl200510024413
6 自由流電泳分離室 (授權) Zl200710053315.x
7 用於研究等電聚焦電泳動力學的裝置 (授權) Zl200610025466.2
8 一種用於多肽興奮劑檢測的等電聚焦電泳裝置 (授權) Zl200610024274.x
9 用於等電聚焦電泳的微型毛細管陣列裝置 (公開) 201010564747.1
10 用於測定酸鹼濃度的電遷移酸鹼滴定裝置 (公開) 201010596012.7
11 青黴烯酸醇汞鹽及其製備方法 (公開) 200910056685.0
12 銅離子半抗原青黴烯酸硫醇銅鹽及其製備方法 (公開) 201010186178.1
12 鎘離子半抗原青黴烯酸硫醇銅鹽及其製備方法 (公開) 201110080342.5
發表論文
1. Y. P. Fan, S. Li,** L. Y. Fan, C. X. Cao,* Visual offline sample stacking via moving neutralization boundary electrophoresis for analysis of heavy metal ion, Talanta, in press, doi: 10.1016/j.talanta.2012.03.045. IF=3.7.
2. J. Shao, L.Y. Fan, C. X. Cao,* X. Q. Huang, Y. Q. Xu,** Quantitative investigation on resolution increase of free-flow electrophoresis via simple interval sample injection and separation, Electrophoresis, 2012, doi: 10.1002/elps.201200169. IF=3.6.
3. B. Pang, J. Shao1, J. Zhang, J.-Z. Geng, L.-Y. Fan,** C.-X. Cao,* J.-L. Hou, Enhancing separation of histidine from amino acids via free-flow affinity electrophoresis with gravity-induced uniform hydrodynamic flow, Electrophoresis, 2012, doi: 10.1002/elps. 20114130. IF=3.6.
4. J. Z. Geng, J. Shao, J. H. Yang, B. Pang, C X Cao,* L. Y. Fan**, Re-assemblable quasi-chip free-flow electrophoresis with simple heating dispersion for rapid micropreparation of trypsin in crude porcine pancreatin, Electrophoresis, 2011, 32, 3248–3256. IF=3.6
5. Q. Yang, L. Y. Fan, S. S. Huang**, W. Zhang, C X Cao*, Equivalence-point electro- migration acid-base titration via moving neutralization boundary electrophoresis, Electrophoresis, 2011, 32, 1015-1024. IF=3.6
6. C. X. Cao*, W. Zhang, L. Y. Fan**, Comparative study on sample stacking by moving reaction boundary formed with weak acid and weak or strong alkali in capillary electrophoresis: I. Theory, Talanta, 2011, 84, 558-567. IF = 3.7
7. W. Zhang, L. Y. Fan**, C. X. Cao*, Comparative study on sample stacking by moving reaction boundary formed with weak acid and weak or strong base in capillary electrophoresis: II. Experiments, Talanta, 2011, 84, 547-557. IF = 3.7
8. C. Sun, X. D. Yang, L. Y. Fan, W. Zhang, Y. Q. Xu, C. X. Cao*, Stacking and determination of phenazine-1-carboxylic acid with low pKa in soil via moving reaction boundary formed by alkaline and double-acidic buffers in capillary electrophoresis, Anal. Bioanal. Chem, (invited). 2011, 399, 3441-3450. IF = 3.8
9. J. Shao, L.-Y. Fan, W. Zhang, C. G. Guo, S. Li, Y. Q. Xu**, C.-X. Cao*, Purification of phenazine-1-carboxylic acid by Free-Flow Electrophoresis from fermentation broth of Pseudomonas M-18, Electrophoresis, 2010, 31, 3499-3507. IF = 3.6
10. J. Shao, C.-X. Cao*, S. Li, W. Zhang, L.-Y. Fan, R. Sun, Y.-C. Dong, Controlling of band width, resolution and sample loading by injection system in a simple preparative free-flow electrophoresis with gratis gravity J. Chromatogr. A, 2010, 1217, 2182-2186. IF = 4.2
11. J. Meng, W. Zhang, C. X. Cao*, L. Y. Fan, Moving affinity boundary electrophoresis and its exclusive capture of target metabolite in human urine, Analyst, 2010, 135 1592-1599. IF=3.9
12. W. Zhang, J. F. Chen, L.Y. Fan, C. X. Cao*, J.C. Ren, S. Li, J. Shao, A novel Isotachophoresis of Cobalt and Copper Complexes by Metal Ion Substitution Reaction in a Continuous Moving Chelation Boundary, Analyst, 2010, 135, 140-148. IF=3.9
13. S. Chen, J. F. Palmer, W. Zhang, J. Shao, S., Li, L. Y. Fan**, R. Sun, Y. C. Dong, C. X. Cao*, A Simple Preparative Free-flow Electrophoresis Joined with Gratis Gravity: I. Gas Cushion Injector and Self-balance Collector instead of Multiple Channel Pump, Electrophoresis, 2009, 30, 1998-2007. IF = 3.6
14. L.-Y. Fan, W. Yan, W. Zhang, Q. Chen, C. X. Cao*, Experiments on Moving Interaction Boundaries and Their Characteristics of Focusing and Probing of Both Guest and Host Target Molecules, Anal. Chim. Acta, 2009, 650, 111-117. (invited) IF = 4.3
15. W. Zhu, W. Zhang, L. Y. Fan**, J. Shao, S. Li, J. L. Chen, C. X. Cao*, Study on Mechanism of Stacking of Zwitterion in Highly Saline Biologic Sample by Transient Moving Reaction Boundary Created by Formic Buffer and Conjugate Base in Capillary Electrophoresis, Talanta, 2009, 78, 1194-1200. IF = 3.7
16. J. Jin, J. Shao, S. Li, W. Zhang, L.-Y. Fan, C.-X Cao*, Computer simulation on a continuous moving chelation boundary in EDTA-based sample sweeping in capillary electrophoresis, J. Chromatogr. A, 2009, 1216, 4913-4922. IF = 4.2
17. C. X. Cao, L. Y. Fan, W. Zhang, Review on the theory of moving reaction boundary, electromigration reaction methods and applications in isoelectric focusing and sample preconcentration, Analyst, (invited), 2008, 133, 1139-1157. IF = 3.9
18. Q. Chen, L. Y. Fan, W. Zhang, C. X. Cao, Separation and determination of abused drugs clenbuterol and salbutamol from complex extractants in swine feed by capillary zone electrophoresis with simple pretreatment, Talanta, 2008, 76, 282-287. IF = 3.7
19. H. M. Liu, X. H. Zhang, X. Q. Huang XQ, C. X. Cao, Y. Q. Xu, Rapid quantitative analysis of phenazine-1-carboxylic acid and 2-hydroxyphenazine from fermentation culture of Pseudomonas chlororaphis GP72 by capillary zone electrophoresis, Talanta, 2008, 76, 276-281. IF = 3.7
20. L. Y. Fan, C. J. Li, W. Zhang, C. X. Cao, P. Zhou, Z. X. Deng, Moving Chelation Boundary: Model, Theory and Its Controllable Metal Ionic Stacking Efficiency in Capillary Electrophoresis. Electrophoresis, 2008, 29, 3989-3998. IF = 3.6
21. X. Zhou, L. Y. Fan, W. Zhang, C. X. Cao, Separation and determination of acrylamide in potato chips by micellar electrokinetic capillary chromatography, Talanta, 2007, 71, 1541-1545. IF = 3.7
22. M. Li, L. Y. Fan, W. Zhang, C. X. Cao, Stacking and quantitative analysis of lovastatin in urine sample by transient moving chemical reaction boundary method in capillary electrophoresis, Anal. Bioanal. Chem., 2007, 387, 2719-2725. IF = 3.9
23. X. Wang, W. Zhang, L. Y. Fan, C. X. Cao, Quantitative detection of matrine and oxymatrine in rate plasma by capillary electrophoresis with moving reaction boundary-based sample stacking, Anal. Chim. Acta, 2007, 594, 290-296. IF = 4.3
24. Q. L. Wang, L. Y. Fan, W. Zhang, C. X. Cao, Sensitive analysis of two barbiturates in human urine by capillary electrophoresis with sample stacking induced by moving reaction boundary, Anal. Chim. Acta, 2006, 580, 200-205. IF = 4.3
25. C.-X. Cao, W. Zhang, W.-H. Qin, S. Li, W. Liu, Quantitative predictions to conditions of zwitterionic stacking by moving chemical reaction boundary created with weak electrolytic buffers in capillary zone electrophoresis, Anal. Chem., 2005; 77, 955-963. IF = 5.8
26. W.-H. Qin, C.-X. Cao, W. Zhang, S. Li, W. Liu, Quantitative predictions to selective stacking of zwitterions by moving chemical reaction boundary in capillary electrophoresis, Electrophoresis, 2005, 26, 3113-3124. IF = 3.6
27. C.-X. Cao, Y.-Z. He, M. Li, Y.-T. Qian, M.-F. Gao, L.-H. Ge, S.-L. Zhou, L. Yang and Q.-S. Qu, Stacking ionizable analytes in a sample matrix with high salt by a transient moving chemical reaction boundary, method in capillary zone electrophoresis Anal. Chem., 2002; 74: 4167-4174. IF = 5.8
28. C.-X. Cao, S.-L. Zhou, Y.-T. Qian, Y.-Z. He, C.-R. Wang, L. Yang, Q.-S. Qu and W.-K. Chen, Investigations on factors that influence the moving neutralization reaction boundary method for capillary electrophoresis and isoelectric focusing J. Chromatogr. A, 2002; 952: 29-38. IF = 4.2
29. C.-X. Cao, Y.-Z. He, M. Li, Y.-T. Qian, L. Yang, Q.-S. Qu, S.-L. Zhou and W.-K. Chen, Improving separation efficiency of capillary zone electrophoresis of tryptophan and phenylalanine with the transient moving chemical reaction boundary method, J. Chromatogr. A, 2002; 952: 39-46. IF = 4.2
30. C.-X. Cao, S.-L. Zhou, Y.-Z. He, X.-Y. Zheng, W.-K. Chen and Y.-T. Qian, Corrections to Moving Chemical Reaction Boundary Equation(MCRBE) for weak Reactive Electrolyte System With Background electrolyte KCl in Large Concentration, J. Chromatogr. A, 2001; 907: 347-352. IF = 4.2
31. Ca C.-X., Zhou S.-L., Qian Y.-T., He Y.-Z., Yang L., Qu Q.-S., Chen W.-K., Experimental investigation on moving chemical reaction boundary theory for weak-acid--strong-base system with background electrolyte KCl in large concentration. J. Chromatogr. A, 2001; 922: 283-292. IF = 4.2
32. C.-X. Cao, S.-L. Zhou, Y.-Z. He, X.-Y. Zheng, W.-K. Chen and Y.-T. Qian, Experimental Study on Moving Neutralization Reaction Boundary Created with the Strong Reactive Electrolytes of HCl and NaOH in Agarose Gel, J. Chromatogr. A, 2000; 891: 337-347. IF = 4.2
33. C.-X. Cao, Q.-S.Zheng, R.-Z.Li, and J.-H.Zhu The un-validity of Kohlrausch' regulating function for Svensson's isoelectric focusing and stationary electrolysis at steady-state. J. Chromatogr. A, 1999; 863: 219-226. IF = 4.2
34. C.-X. Cao, Moving chemical reaction boundary and isoelectric focusing: I the conditional equations of Svensson-Tiselius' differential equation of solute concentration distribution in an idealized isoelectric focusing at steady state, J. Chromatogr. A, 1998; 813: 153-172. IF = 4.2
35. C.-X. Cao, Moving chemical reaction boundary and isoelectric focusing: II the existence of (or quasi-) equal-fluxes(or transference-numbers) of proton and hydroxyl ion in stationary electrolysis and Svensson's isoelectric focusing, J. Chromatogr. A, 1998; 813: 173-177. IF = 4.2
36. C.-X. Cao, Comparisons between the mobilities of small salt ions obtained by moving boundary method and two empirical equations in capillary electrophoresis, J. Chromatogr. A, 1997; 771: 375-378. IF = 4.2
37. C.-X. Cao, Mobilities of proton o btained by moving boundary method and an empirical equation in capillary electrophoresis, J. High. Resol. Chromatogr., 1997; 20, 701-702. IF = 4.1
獲獎記錄
曾榮獲安徽省骨幹教師、上海交通大學優秀教師和優秀科研團隊稱號榮譽等。