基本介紹
數學期望
以實驗中觀查實驗結果值的算術平均為例,解釋數學期望的物理含義:
![均方值](/img/b/c10/wZwpmL0cTOwgTM4UjMzATN1UTM1QDN5MjM5ADMwAjMwUzL1IzL0czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![均方值](/img/6/4de/wZwpmL4YDM5UTMwEjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzL1EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![均方值](/img/3/804/wZwpmL4ATNygzN0AzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzLxMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
設共作了N次獨立實驗,實驗結果值為x,x可能有m種值,即,在N次實驗中各x值得到的次數分別為,則有次,故可求出x的算術平均值為:
![均方值](/img/d/2d8/wZwpmL3czNyUTMwAjMzATN1UTM1QDN5MjM5ADMwAjMwUzLwIzLxMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![均方值](/img/7/138/wZwpmLyADMycDM0kjMzATN1UTM1QDN5MjM5ADMwAjMwUzL5IzLxAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![均方值](/img/c/1e0/wZwpmL2cTO0UjNwgTN2IDN0UTMyITNykTO0EDMwAjMwUzL4UzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![均方值](/img/4/a02/wZwpmLyAzNwcDN5czM5MTN0UTMyITNykTO0EDMwAjMwUzL3MzL2IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
根據 大數定理,當時,趨於穩定,即趨向某一機率值,故上述可寫成:
![均方值](/img/7/6d2/wZwpmLyEjN2UzN5MzMzATN1UTM1QDN5MjM5ADMwAjMwUzLzMzL0YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![均方值](/img/f/fed/wZwpmLzMDO1ADO4QzMzEzM1UTM1QDN5MjM5ADMwAjMwUzL0MzL2IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![均方值](/img/7/627/wZwpmL2AjNxgTO4MzNxADN0UTMyITNykTO0EDMwAjMwUzLzczL0MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![均方值](/img/a/017/wZwpmLwEzM2ADOwAzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![均方值](/img/1/4f0/wZwpmL1EDN3gDN3kjMzATN1UTM1QDN5MjM5ADMwAjMwUzL5IzLzQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
因為不可能達到的,因此P(x)的確切值是得不到的,E(x)只是一種 期望值(ExpectedValue),故稱為 數學期望。實際上它可看成x的 均值。(值出現的機率) 。
均方值和方差
![均方值](/img/a/017/wZwpmLwEzM2ADOwAzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![均方值](/img/1/036/wZwpmL3QzM5YjNzMjM0EDN0UTMyITNykTO0EDMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
在機率統計中,對於離散型隨機變數其均方值和方差如下(表示的均值):
均方值
![均方值](/img/1/bf4/wZwpmL1MjMxgTM4UjMzATN1UTM1QDN5MjM5ADMwAjMwUzL1IzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![均方值](/img/4/e28/wZwpmLzAzMxQzNykjMzATN1UTM1QDN5MjM5ADMwAjMwUzL5IzLxAzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
方 差:
![均方值](/img/6/84b/wZwpmLyQTMwkzMyMjMzATN1UTM1QDN5MjM5ADMwAjMwUzLzIzLzEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
偏 差:
所以方差也稱為偏差的 均方值。
![均方值](/img/b/6a7/wZwpmL3cjNzYTNxkjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLwczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
對於隨時間連續變化的一個變數x(也可看時),其數學期望可寫成:
![均方值](/img/5/88f/wZwpmLwQTN0QDNzIzMzATN1UTM1QDN5MjM5ADMwAjMwUzLyMzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![均方值](/img/b/6a7/wZwpmL3cjNzYTNxkjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLwczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![均方值](/img/a/017/wZwpmLwEzM2ADOwAzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
它實際上就是的平均值。
![均方值](/img/b/5f4/wZwpmL2IDO5ATO1EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzL3czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
均方值:
![均方值](/img/3/833/wZwpmL2YjN0IzN4kTMzATN1UTM1QDN5MjM5ADMwAjMwUzL5EzLxEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
方差為:
![均方值](/img/c/b91/wZwpmLyMTO5gDNwkTMzATN1UTM1QDN5MjM5ADMwAjMwUzL5EzL1MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![均方值](/img/b/6a7/wZwpmL3cjNzYTNxkjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLwczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![均方值](/img/a/017/wZwpmLwEzM2ADOwAzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![均方值](/img/b/6a7/wZwpmL3cjNzYTNxkjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLwczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
其中稱為 偏差,為t時刻x變數的取值,為的平均值 。
隨機信號的特性
隨機過程的各個樣本記錄都不一樣,因此不能象確定性信號那樣用明確的數學關係式來表達。但是,這些樣本記錄卻有共同的統計特性,因此,隨機信號可以用機率統計特性來描述。常用的有以下幾個主要的統計函式:
(1) 均方值、均值和方差;
(2) 機率密度函式;
(3) 自相關函式;
(4) 功率譜密度函式;
(5) 聯合統計特性。
均方值、均值和方差
隨機信號的強度,可以用其均方值來描述。對於平穩的遍歷性隨機過程,隨機信號的均方值用樣本函式平方值的時間平均來表示,即
![均方值](/img/6/6b9/wZwpmL3MjM2YDM1QjMzATN1UTM1QDN5MjM5ADMwAjMwUzL0IzL4IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![均方值](/img/5/7aa/wZwpmLxQjM3YjNwAzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzL0AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![均方值](/img/2/3f0/wZwpmL3cTO4IDN2AzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzL2czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
稱為 均方值,均方值的正平方根稱為 均方根值,表示為。
![均方值](/img/a/017/wZwpmLwEzM2ADOwAzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
工程上常把數據信號看成是不隨時間而變化的靜態分量(即直流分量) 和隨時間而變化的動態分量二部分之和。靜態分量可用均值來表示,均值用公式表示
![均方值](/img/e/ac1/wZwpmL2ATN1EzM0kjMzATN1UTM1QDN5MjM5ADMwAjMwUzL5IzLzMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![均方值](/img/8/24b/wZwpmLwYTN5cTN5UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![均方值](/img/b/6a7/wZwpmL3cjNzYTNxkjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLwczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![均方值](/img/a/017/wZwpmLwEzM2ADOwAzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
隨機信號的動態分量部分可以用方差來表述。方差是偏離均值的平方的均值,它反映了過程離開均值的波動情況。用公式表示
![均方值](/img/5/bb1/wZwpmLxEzM2EDOzAzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzL1czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![均方值](/img/8/24b/wZwpmLwYTN5cTN5UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![均方值](/img/c/d29/wZwpmL2MDNwEzNwUDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL1gzLxAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
方差的正平方根為標準偏差,這在誤差分析中是十分重要的參數。展開上式可知方差等於均方值減去均值的平方,即
![均方值](/img/3/449/wZwpmL4IjN5EjN1EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLxIzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![均方值](/img/a/017/wZwpmLwEzM2ADOwAzMzATN1UTM1QDN5MjM5ADMwAjMwUzLwMzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![均方值](/img/4/f03/wZwpmL3QzMzEDM3EjMzATN1UTM1QDN5MjM5ADMwAjMwUzLxIzLwIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
當均值等於0時,則。