定義
考慮一個具有N個局部控制站的大規模線性時不變系統:
![固定模](/img/1/ae2/wZwpmLwIDO5kDN0czM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3MzLyUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![固定模](/img/b/2af/wZwpmL4ATOxEDO0MDN1kzN1UTM1QDN5MjM5ADMwAjMwUzLzQzL1QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![固定模](/img/4/7d1/wZwpmLzQTN5MzN5kjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL5IzL3YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![固定模](/img/6/281/wZwpmL0MDOxIjMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzL0czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
式中:分別表示為系統狀態向量,第控制站的輸入向量和輸出向量。其原始系統的控制和輸出階次為m和 r ,由以下(3)給定
![固定模](/img/6/bab/wZwpmL1ITM0gjNzcDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL3QzLzYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![固定模](/img/8/fd7/wZwpmLzMDM4QDO5AzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLwMzL2QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![固定模](/img/9/902/wZwpmLxQDO1ITM3YTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL2EzL3MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
和是具有相應階次的實常數矩陣。
分散鎮定問題就是要找出N個具有動態補償器的局部輸出控制規律:
![固定模](/img/0/695/wZwpmLzcDM0QTM0cjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3IzL4IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![固定模](/img/6/bd4/wZwpmL4cTMygzN3ADN1kzN1UTM1QDN5MjM5ADMwAjMwUzLwQzLxMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![固定模](/img/7/c7d/wZwpmLxcjN3ADO5UDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL1QzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![固定模](/img/d/285/wZwpmLxUDO3gDM5QjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL0IzL4AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![固定模](/img/5/89a/wZwpmL4EjNyEjMzIzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLyMzL4czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![固定模](/img/d/285/wZwpmLxUDO3gDM5QjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL0IzL4AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![固定模](/img/1/096/wZwpmLygTMwkTMxQDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL0QzL1gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
使整個系統穩定。式中是第 i 個補償器的輸出向量,是 i 控制器外部輸入向量, 矩陣分別為。或者說,分散輸出鎮定是要決定,使得由(1)和(2)所描述的閉環系統其極點在複平面預定的集合之中。
![固定模](/img/1/2d2/wZwpmL4IjM1gjM3AzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLwMzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![固定模](/img/e/a74/wZwpmL3YzN4IzM3MzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLzMzLyIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![固定模](/img/d/907/wZwpmL1cjM0QTNwUjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL1IzLwMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
定義1 考慮由(1)和(2)所描述的系統及整數。令的增益矩陣K代表下述對角方塊矩陣集合中的矩陣:
![固定模](/img/9/638/wZwpmL2YjN5cDOzADN1kzN1UTM1QDN5MjM5ADMwAjMwUzLwQzL1czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![固定模](/img/3/908/wZwpmL1QTNyMTMzcjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3IzL3AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![固定模](/img/1/2d2/wZwpmL4IjM1gjM3AzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLwMzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![固定模](/img/2/e32/wZwpmL0gDM2QDN1cjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3IzL0UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![固定模](/img/6/920/wZwpmLyQDN2ETM5YDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL2QzLxMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![固定模](/img/f/a7f/wZwpmL4QjN3cTOxgzM1kzN1UTM1QDN5MjM5ADMwAjMwUzL4MzL4YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
這裡。那么系統對於 K的“固定多項式”就是對所有,多項式集合的最大公共因子,並用下式表示:
![固定模](/img/2/d5c/wZwpmL0EDN0MTMxgzM1kzN1UTM1QDN5MjM5ADMwAjMwUzL4MzL3QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![固定模](/img/1/2d2/wZwpmL4IjM1gjM3AzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLwMzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![固定模](/img/1/2d2/wZwpmL4IjM1gjM3AzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLwMzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![固定模](/img/f/c87/wZwpmLwEDMzEDMwUDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL1QzLxAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
定義2 對系統和由(4)所給定的輸出反饋的集合,那么對於 K的的 固定模的集合定義為矩陣特徵值所有可能集合的交集,即
![固定模](/img/4/96c/wZwpmLwgzMxYzNzADN1kzN1UTM1QDN5MjM5ADMwAjMwUzLwQzL2gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![固定模](/img/f/9dd/wZwpmL1EDMyUTN1QDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL0QzLxYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![固定模](/img/f/c87/wZwpmLwEDMzEDMwUDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL1QzLxAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![固定模](/img/1/4b9/wZwpmLycTO3cjNxcjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3IzL3czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![固定模](/img/a/171/wZwpmL2YzNyIjM5QzM1kzN1UTM1QDN5MjM5ADMwAjMwUzL0MzL0QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![固定模](/img/5/98f/wZwpmL0YDN2MDMykjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL5IzL0YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
式中表示特徵值的集合。我們注意到,K可以取零矩陣,因此,固定模的集合包含於。根據定義(1),固定模即是式(5)中固定多項式的根,即
![固定模](/img/0/5a7/wZwpmL1EjM4gjNwgzM1kzN1UTM1QDN5MjM5ADMwAjMwUzL4MzL4gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![固定模](/img/3/2f8/wZwpmLwIDNxAjMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![固定模](/img/e/e97/wZwpmLwQTM5YTNxgjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL4IzL4UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![固定模](/img/4/7d5/wZwpmL3cDMzYTOwEDN1kzN1UTM1QDN5MjM5ADMwAjMwUzLxQzLwczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
{|和} (6)
式中S表示在整個S複平面上點的集合。
尋求固定模的方法
![固定模](/img/1/2d2/wZwpmL4IjM1gjM3AzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLwMzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
戴維遜用以下的算法,提供了快速尋求系統固定模的方法。
![固定模](/img/9/49c/wZwpmLxEjN4ADNwYDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL2QzL3UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
步驟1 求所有A的特徵值,即。
![固定模](/img/9/93f/wZwpmLwETO4IjMxMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLyczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![固定模](/img/2/e32/wZwpmL0gDM2QDN1cjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3IzL0UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![固定模](/img/2/3f4/wZwpmL0UDNwITO0cjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3IzL3MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
步驟2 選擇任意矩陣(用偽隨機數發生器或其它方法)使表示矩陣的範數。
![固定模](/img/f/c87/wZwpmLwEDMzEDMwUDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL1QzLxAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
步驟3 求的特徵值。
![固定模](/img/1/9df/wZwpmL2UDN5UDM2EzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLxMzLwUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![固定模](/img/1/2d2/wZwpmL4IjM1gjM3AzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLwMzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![固定模](/img/f/c87/wZwpmLwEDMzEDMwUDN1kzN1UTM1QDN5MjM5ADMwAjMwUzL1QzLxAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
步驟4 對於 K的,即的固定模包含在與A的特徵值相同的特徵值之中。
步驟5 重複上述步驟4,直到止的固定模完全確定為止。
![固定模](/img/7/07b/wZwpmLycTN4IzM5EzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLxMzL3gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![固定模](/img/a/d58/wZwpmL0IDN5gzM4czM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3MzLxUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![固定模](/img/d/907/wZwpmL1cjM0QTNwUjM1kzN1UTM1QDN5MjM5ADMwAjMwUzL1IzLwMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
可以證明:集中系統的固定模,這裡是,即相應於系統不可控和不可觀測的模。
有了固定多項式和固定模的概念之後,就可以導出分散閉環系統穩定的充分和必要條件。
相關定理
![固定模](/img/2/e35/wZwpmLzEjMwYjMwIzM1kzN1UTM1QDN5MjM5ADMwAjMwUzLyMzL3IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
定理1 對於式(1)和式(2)所描述的系統和式(4)那種類型的對角方決矩陣K, 若且唯若固定模的集合包含在S複平面的左半開平面,即
![固定模](/img/9/ce7/wZwpmLyIDO5cjN3czM1kzN1UTM1QDN5MjM5ADMwAjMwUzL3MzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![固定模](/img/5/dd7/wZwpmLwgDN3kjN4UzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL1MzL0IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
式中表示S複平面的左半開平面,那么式(3)所表示的局部反饋規律才能使系統漸近穩定。