基本介紹
反變換法是最常用且最為直觀的一種隨機變數生成方法。它基於 機率積分變換定理,通過對分布函式進行反變換來實現,因此稱為 反變換法。
![反變換法](/img/5/319/wZwpmLzUTMzAzN1ATMzEzM1UTM1QDN5MjM5ADMwAjMwUzLwEzLxAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![反變換法](/img/5/319/wZwpmLzUTMzAzN1ATMzEzM1UTM1QDN5MjM5ADMwAjMwUzLwEzLxAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![反變換法](/img/2/1dd/wZwpmLyYTO4kzM0UjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL1IzLyIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設隨機變數X的分布函式為 ,則 的取值範圍為[0,1]。為了得到隨機變數的抽樣值,可以先產生在[0,1]區間上均勻分布的獨立隨機變數U,根據分布函式的性質,可知其分布函式的反函式 必然滿足
![反變換法](/img/a/f6b/wZwpmL2cjMxgjNxgDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4AzL4EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![反變換法](/img/2/1dd/wZwpmLyYTO4kzM0UjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL1IzLyIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
因此,由得到的值即為所需要的隨機變數
![反變換法](/img/f/fb6/wZwpmL0AjMwkTO2gzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4MzL1MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
如圖1所示。
![圖1 反變換法的原理](/img/d/bba/wZwpmL2UDO1ATO1cjNxUTN1UTM1QDN5MjM5ADMwAjMwUzL3YzL0IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
生成隨機變數的方法與步驟
反變換法可用於從均勻分布、指數分布、三角分布、威布爾分布以及經驗分布中取樣,同時也是很多離散分布產生樣本的基本方法。下面結合具體的例子來說明生成均勻分布、指數分布和離散均勻分布等幾種隨機變數的方法和步驟。其他幾種分布類型的隨機變數的生成,可自行查閱相關資料。
均勻分布
【 例1】均勻分布隨機變數X的生成。
設隨機變數X是[a,b]上均勻分布的隨機變數,即機率密度函式
![反變換法](/img/1/585/wZwpmL2YTOwADO1kDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL5AzLzczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![反變換法](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
則由可得到x的分布函式
![反變換法](/img/1/c7d/wZwpmL0MzM2YzNwgTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4EzL1MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![反變換法](/img/5/759/wZwpmL0gjM5QzM3YDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2AzL3MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
根據其反函式,即有抽樣公式
![反變換法](/img/9/5fc/wZwpmLxgjM0YjM4MjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLzIzL1czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![反變換法](/img/c/113/wZwpmL3YTO2IDNyEjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxIzL3czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
因此,可得採用反變換法生成均勻分布的隨機變數的一般步驟,具體如下:
![反變換法](/img/9/8a0/wZwpmL1QDM3ITN3ATM3QTN1UTM1QDN5MjM5ADMwAjMwUzLwEzL3gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![反變換法](/img/c/fa9/wZwpmL0UjNyMTO2kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL3UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
①生成獨立的均勻分布隨機數序列。
![反變換法](/img/9/c83/wZwpmLycTN2gDN0YDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2AzLxczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![反變換法](/img/6/361/wZwpmLyEzMzAzN3YTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL2EzL3YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![反變換法](/img/c/113/wZwpmL3YTO2IDNyEjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxIzL3czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
②令。則數列即為所求的均勻分布的隨機變數序列。
指數分布
【 例2】 指數分布隨機變數X的生成。
設X的分布函式為
![反變換法](/img/3/d27/wZwpmL3QDMzgDO5ATM3QTN1UTM1QDN5MjM5ADMwAjMwUzLwEzLxgzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![反變換法](/img/e/0ff/wZwpmLwcDOwUTM4czM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3MzL4YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
令,可得其反函式
![反變換法](/img/d/77b/wZwpmLxYzNxMDO2kzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL5MzLyIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![反變換法](/img/c/cc8/wZwpmL0AjNzAjM4YzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2MzL4UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![反變換法](/img/c/870/wZwpmL1gjN0MTN3YjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2IzL4IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
由於,則,即隨機變數u與1-u的分布是相同的,所以上式可改寫為
![反變換法](/img/f/8d0/wZwpmLwcjNzYzM2UTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL1EzLyQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
由此,可得到生成指數分布的隨機變數的一般步驟如下:
![反變換法](/img/9/8a0/wZwpmL1QDM3ITN3ATM3QTN1UTM1QDN5MjM5ADMwAjMwUzLwEzL3gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![反變換法](/img/c/fa9/wZwpmL0UjNyMTO2kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL3UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
①生成獨立的均勻分布隨機數序列。
![反變換法](/img/7/ca0/wZwpmLzQjM3kDO5kjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL5IzL0czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![反變換法](/img/6/361/wZwpmLyEzMzAzN3YTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL2EzL3YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
②令,則數列即為所求的指數分布的隨機變數序列。
離散均勻分布
當X是離散型的隨機變數時,由於離散型隨機變數的分布函式也是離散的,因此反變換法的形式也有所不同,不能直接利用反函式來獲得X的抽樣值。
![反變換法](/img/9/4e4/wZwpmL2ETN1EDOxMzM2EzM1UTM1QDN5MjM5ADMwAjMwUzLzMzL1IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
設X是離散型隨機變數,取值為,並記其機率密度函式為
![反變換法](/img/6/bfb/wZwpmL4MzM0MDNxcjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3IzLwAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
且
![反變換法](/img/6/019/wZwpmL1ATOyMjNxYzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2MzL1AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
相應的分布函式為
![反變換法](/img/7/8fa/wZwpmL2IDM0AjNzEzM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxMzLxAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![反變換法](/img/8/8d2/wZwpmLzIzM4ETM0cjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3IzL4AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
為了套用反變換法得到離散隨機變數X,先將[0,1]區間按的值分成n個子區間
![反變換法](/img/5/515/wZwpmLyAzM1IjN4EjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxIzLwczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![反變換法](/img/1/4c1/wZwpmL0QzNwgDN4QzN2UzM1UTM1QDN5MjM5ADMwAjMwUzL0czLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![反變換法](/img/4/913/wZwpmLyEjM0IzM4YzMwEDN0UTMyITNykTO0EDMwAjMwUzL2MzLygzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
並依次編號為1,2,…,n。若U是[0,1]區間上的均勻分布隨機變數,則某個的值落在哪個子區間上,相應子區間對應的就是所需要的輸出量。
【 例3】離散均勻分布。
考察{1,2,…,n}上的離散均勻分布,其機率密度函式為
![反變換法](/img/3/c4c/wZwpmL0cTN4gTO2EDN3QTN1UTM1QDN5MjM5ADMwAjMwUzLxQzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
相應的分布函式為
![反變換法](/img/6/67e/wZwpmLwADN3ITOzcDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3AzLxMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![反變換法](/img/3/467/wZwpmL0QjN3QDM2kDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL5AzL0MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![反變換法](/img/1/4c1/wZwpmL0QzNwgDN4QzN2UzM1UTM1QDN5MjM5ADMwAjMwUzL0czLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
令,如果均勻分布U(0,1)的隨機數滿足
![反變換法](/img/e/6b3/wZwpmL3cTM0gzN2IzM3QTN1UTM1QDN5MjM5ADMwAjMwUzLyMzL2EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
則可以通過取X=i來生成隨機變數X。
![反變換法](/img/8/d00/wZwpmLyMDOxITM3EjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxIzLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![反變換法](/img/0/004/wZwpmLzQTNyQTO1IjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLyIzLzUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![反變換法](/img/5/d36/wZwpmL4ATOzITM3cTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3EzL4UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
由式可求解得,即取i的值為大於或等於的最小整數。因此,生成離散型均勻分布的隨機變數的一般步驟如下:
![反變換法](/img/9/8a0/wZwpmL1QDM3ITN3ATM3QTN1UTM1QDN5MjM5ADMwAjMwUzLwEzL3gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![反變換法](/img/c/fa9/wZwpmL0UjNyMTO2kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL3UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
① 生成獨立的均勻分布隨機數序列。
![反變換法](/img/c/418/wZwpmLwEzM3AjM0YjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2IzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![反變換法](/img/6/361/wZwpmLyEzMzAzN3YTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL2EzL3YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
② 令,則數列即為所求的離散型均勻分布的隨機變數序列。