簡介
又稱“並協原理”。關於量子力學基本原理的一種闡釋。與海森伯提出不確定關係同時,丹麥諾貝爾獎獲得者尼爾斯·亨利克·大衛·玻爾(Niels Henrik David Bohr,1885.10.07~1962.11.18) 於1927年提出互補原理。 即原子現象不能用經典力學所要求的完備性來描述。在構成完備的經典描述的某些互相補充的元素,在這裡實際上是相互排除的,這些互補的元素對描述原子現象的不同面貌都是需要的。 波和粒子在同一時刻是互斥的,但它們在更高層次上統一。提出過程
玻爾的互補原理首先來自對波粒二象性的看法。光和粒子都有波粒二象性,而波動性與粒子性又不會在同一次測量中出現,那么,二者在描述微觀粒子時就是互斥的;另一方面,二者不同時出現就說明二者不會在實驗中直接衝突。同時二者在描述微觀現象,解釋實驗時又是缺一不可的。因此二者是“互補的”,或者“並協的”。玻爾的原話是:“一些經典概念的套用不可避免的排除另一些經典概念的套用,而這‘另一些經典概念’在另一條件下又是描述現象不可或缺的;必須而且只需將所有這些既互斥又互補的概念匯集在一起,才能而且定能形成對現象的詳盡無遺的描述”。
如果說海森伯的不確定關係從數學上表達了物質的波粒二象性。那么互補原理則從哲學高度概括了波粒二象性。互補原理與不確定關係是量子力學哥本哈根解釋的兩大支柱。
產生背景
互補原理與辯證法
辯證法與“互補原理”都涉及矛盾,但兩者所涉及的矛盾的類型與處理矛盾方式是完全不同的。自從1900年普朗克提出量子化假說以來,人們就開始探索這個與經典理論格格不入的新思想,然而在此過程中,卻遇到了許多難以解釋的事情。光波的粒子性:1905年愛因斯坦用量子的概念,把光看成一個一個的光子,成功解釋了光電效應,在一定程度上復活了光的微粒學說;但是光在實驗中表象出的衍射、干涉卻表明光是一種波。光的本質是波還是粒子,讓人一時難以捉摸。微觀粒子的波動性
1924年德布羅意提出物質波,認為一切實物粒子均具有波動性,並提出相應物質波波長與頻率的計算公式。電子的波動性在1927~1928年被電子衍射實驗所驗證,後來質子,中子,原子的波動性都得到實驗證實。物質究竟是波還是粒子,也成為一個問題。理論的矛盾與統一
1925年海森堡從對應原理提出矩陣力學,1926年薛丁格從波動性導出波動力學,這兩種理論雖然出發點大不相同,但在解釋量子現象是卻得出同樣的結果,1926年狄拉克證明了這兩種力學在數學上是等價的。這說明,不論從粒子性還是從波動性進行理論分析都會得到相同的結果。 以上事實都既表明了微觀粒子的波動性,又表明了其具有粒子性,這兩種互相排斥的屬性同時存在於一切量子現象中,這讓量子力學的本質變得撲朔迷離。於是,在1927年9月16日,在義大利科摩召開的“紀念伏打逝世一百周年”的大會上,玻爾在其題為《量子公設和原子理論的晚近發展》的演講中,第一次提出互補原理,認為量子現象無法用一種統一的物理圖景來展現,而必須套用互補的方式才能完整的描述。互補原理的科學解釋互補原理起因於實驗儀器與被觀測物體的相互影響。 經典物理學中,儀器與物體的相互作用可以通過對實驗條件的改進而減少,或者通過更細緻的理論分析後被補償掉,在理論上這種相互作用如此微小因而完全可以被忽略掉。因此,我們可以用同一個儀器去測量物體的不同性質,在此過程中不會對物體產生影響,我們把這些性質加起來就可以得到關於物體完整而統一的描述。 但是在微觀領域裡,儀器與物體的相互作用在原則上是不可避免、不可控制、也不可被忽略的。在理論上我們也無法區分出測量結果中儀器與物體相互作用的部分,我們在測量物體一個性質的時候,就會無法避免的對物體產生不可逆轉的影響,因此不能用同一個實驗去測量物體所有的性質,不同的實驗也就可能得出互相矛盾的結果,這些結果無法放到一個統一的物理圖景中,只有用互補原理這個更寬廣的思維框架將這些互相矛盾的性質結合起來,才能去完整描述微觀現象。
原理的推廣
玻爾認為,互補原理是作為一個更加寬廣的思維框架,是一個普遍適用的哲學原理,因此他試圖用互補原理去解決生物學、心理學、數學、化學、人類學、語言學、民族文化等方面的問題,並試圖揭示其他形式的互補關係。生物學
生物學既包括分子層次的理化性質,又包括細胞、組織、器官層次的生命特徵。在研究生物的分子特性時,就不會涉及到生命的部分,在對生物的生命特性進行研究時,就會的忽視其分子層面的理化特性。同時,在用儀器對生命體進行研究的過程中,就會不可避免的對細胞、組織造成損害,甚至殺死整個生命體。因此,生物學研究的這兩個方面既是互補,有時互斥的。心理學
在心理學研究中,人本身與作為研究對象的心理更加密不可分。當要描述自己的情感時,就必須將邏輯放到一邊,當要描述自己的邏輯思維時,就必須忽視自己的情感,而人的心理是諸多方面組成的,在研究過程中它們常常互相排斥,因此必須用互補的思想去研究心理學。