概念
![BRST對稱性](/img/f/3ed/wZwpmL0EzM0UDMyQTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL0EzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
滿足量子化要求的協變規範下的 拉氏量,由於存在規範固定項和鬼場項而丟失了定域規範不變性。即拉氏量在通常的無窮小規範變換
![BRST對稱性](/img/0/c16/wZwpmL1YTMwETOxQTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL0EzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![BRST對稱性](/img/b/dec/wZwpmLxIjMxUjMxYzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2MzLzgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
下不是不變的。 指出,如果令
![BRST對稱性](/img/a/173/wZwpmL4MTMyMDO2cjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3IzLwEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![BRST對稱性](/img/0/a6a/wZwpmL0QzN0MjM5EzM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxMzLzgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![BRST對稱性](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![BRST對稱性](/img/9/bf5/wZwpmLyITN3ADO4UzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL1MzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![BRST對稱性](/img/5/b8a/wZwpmL3MjMzkjN2EDN3QTN1UTM1QDN5MjM5ADMwAjMwUzLxQzLyQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![BRST對稱性](/img/4/51a/wZwpmL0ITNwEjMzETM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLzIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![BRST對稱性](/img/8/5cb/wZwpmLxATO0UzM4YjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2IzLwMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![BRST對稱性](/img/c/b17/wZwpmLwEDOyYzM3EzM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxMzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![BRST對稱性](/img/c/80a/wZwpmLxgjM2UDMwgTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4EzLyczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![BRST對稱性](/img/a/70a/wZwpmL1ITMyEjNzkDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL5AzLwEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![BRST對稱性](/img/2/381/wZwpmLzgDO3ITOyUzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL1MzLxUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![BRST對稱性](/img/9/c05/wZwpmL1EjM0cTN5ETM3QTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLzIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![BRST對稱性](/img/1/7e2/wZwpmLyEzMxkTM3gTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4EzL0EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
這裡 是鬼場, 是反對易的 數,滿足 代數, , , 等。在上述變換下,原始拉氏量 是不變的,要求 則給出了 、 變換關係,這樣得到如下一組場量的無窮小 變換:
![BRST對稱性](/img/1/03a/wZwpmLwAjM0cTM1YDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL2AzL0AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![BRST對稱性](/img/f/3ed/wZwpmL0EzM0UDMyQTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL0EzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![BRST對稱性](/img/1/7e2/wZwpmLyEzMxkTM3gTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4EzL0EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![BRST對稱性](/img/f/3ed/wZwpmL0EzM0UDMyQTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL0EzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![BRST對稱性](/img/1/7e2/wZwpmLyEzMxkTM3gTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4EzL0EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
拉氏量在 變換下不變,稱為 拉氏量的 對稱性。
![BRST對稱性](/img/b/289/wZwpmLzYjMxQzN5gDM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4AzL2EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![BRST對稱性](/img/1/7e2/wZwpmLyEzMxkTM3gTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4EzL0EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![BRST對稱性](/img/7/26a/wZwpmLyczNwADO2cjM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3IzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![BRST對稱性](/img/2/311/wZwpmL0QDN5QzM1AjM3QTN1UTM1QDN5MjM5ADMwAjMwUzLwIzLxIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
利用 方法,我們可以導出對應於 變換的流 ,相應的荷為 ,則滿足條件
![BRST對稱性](/img/3/d61/wZwpmLzQTM0IjN3QTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL0EzL2AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
的狀態是體系的物理態。這是協變規範下引入非物理鬼場來消除膠子自作用產生的非物理態的另一種描述。
聯繫BRST對稱性的橫向對稱性變換
![BRST對稱性](/img/1/7e2/wZwpmLyEzMxkTM3gTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4EzL0EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
按橫向對稱性變換的定義,我們可寫出與 對稱性相應的橫向對稱性變換為:
![BRST對稱性](/img/1/667/wZwpmL1YDMxkDN0UzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL1MzL0AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![BRST對稱性](/img/0/36a/wZwpmLzATN0kzNwgTM3QTN1UTM1QDN5MjM5ADMwAjMwUzL4EzLyIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
在得到橫向對稱性變換式時,我們將具有矢量特性的“”看做是與矢量場相平等的矢量。如果限制無限小洛侖茲變換運算僅作用在場量上,則我們得到另一組橫向對稱性變換:
![BRST對稱性](/img/9/c1e/wZwpmLwMDM2cTNwczM3QTN1UTM1QDN5MjM5ADMwAjMwUzL3MzL2AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![BRST對稱性](/img/2/d8e/wZwpmLzADNxYzM2IzM3QTN1UTM1QDN5MjM5ADMwAjMwUzLyMzLzczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
這兩組變換形式上有所不同,但它們導出的橫向 關係的結果相同。