定義
集族(family of sets)是由具有某種性質的一些集合所構成的集合,即“集合的集合”。例如,平面上的圓盤是集合,因此平面上一切圓盤所成的集合就是一個集族。又如一個集合的一切子集所構成的集合也是一個集族。
![集族](/img/1/3b0/wZwpmL2MTN4MTO2QzN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0czL3gzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![集族](/img/5/a0c/wZwpmL4ATOzcjN2kTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5UzL2IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![集族](/img/e/3cd/wZwpmL2ITN3ETN4gTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL4UzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/d/0d8/wZwpmL3gDM5kzN4UjN2YjN1UTM1QDN5MjM5ADMwAjMwUzL1YzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
集族是以集合為元素構成的集合。集族常用花體字母表示,這裡我們使用 來表示集族。集合之間關係的定義和運算規律同樣適用於集族。如 為集族 的可列並, 。
幾種常用集族
下面我們介紹幾種常用的集族。
集族類別 | 等價定義 | 對運算的特性 |
半環 | 對交封閉,差為有限不相交並 | |
環 | 對“U”“\”封閉 對“U”“△”封閉 對“∩”“△”封閉 對“∩”,不相交並,包含差封閉 | 對一切有限 運算封閉 |
代數 | 含X的環 對“U” 余“ ' ’”封閉 對“∩” 余“ ' ’”封閉 | 含X且對一切有 限運算封閉 |
σ-代數 | 對 ![]() | 含X且對一切可 列運算封閉 |
半環
![集族](/img/7/a8a/wZwpmL3QzN2MTN5MzM3UzM1UTM1QDN5MjM5ADMwAjMwUzLzMzLyUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
定義1 設 為一集族,且滿足下列三個條件。
![集族](/img/4/d8c/wZwpmLxUzN0cDN2MzN2YjN1UTM1QDN5MjM5ADMwAjMwUzLzczLzEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
1)
![集族](/img/b/7a0/wZwpmL4IDO1QTO4ATN2YjN1UTM1QDN5MjM5ADMwAjMwUzLwUzL4EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![集族](/img/3/69a/wZwpmLyQjM0kjN5QTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL4czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
2) 若 ,則
![集族](/img/b/7a0/wZwpmL4IDO1QTO4ATN2YjN1UTM1QDN5MjM5ADMwAjMwUzLwUzL4EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![集族](/img/f/356/wZwpmLzEDN3QzN4QTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
3) 若 且 則
![集族](/img/f/7f9/wZwpmLyUzN0QDM5QTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzLzUzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![集族](/img/4/a00/wZwpmL0YDMwUTN1QjN2UzM1UTM1QDN5MjM5ADMwAjMwUzL0YzL0QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![集族](/img/7/a8a/wZwpmL3QzN2MTN5MzM3UzM1UTM1QDN5MjM5ADMwAjMwUzLzMzLyUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/e/5bc/wZwpmLxcDO2gzNwAjN2YjN1UTM1QDN5MjM5ADMwAjMwUzLwYzLzAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/7/a8a/wZwpmL3QzN2MTN5MzM3UzM1UTM1QDN5MjM5ADMwAjMwUzLzMzLyUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
其中每一個 均屬於 且 則稱 為 半環 。
![集族](/img/7/a8a/wZwpmL3QzN2MTN5MzM3UzM1UTM1QDN5MjM5ADMwAjMwUzLzMzLyUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/7/a8a/wZwpmL3QzN2MTN5MzM3UzM1UTM1QDN5MjM5ADMwAjMwUzLzMzLyUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/a/d47/wZwpmLzYjNzADM0kDN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5QzLyQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![集族](/img/7/a8a/wZwpmL3QzN2MTN5MzM3UzM1UTM1QDN5MjM5ADMwAjMwUzLzMzLyUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
顯然若 為半環,那么 中任二元素A,B之差 必能表為 中有限個兩兩不相交的集之並。
![集族](/img/d/28f/wZwpmL1YDMwIjNxkjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/e/f6c/wZwpmL1gDO2ETOyITOwMzM1UTM1QDN5MjM5ADMwAjMwUzLykzLxQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
例1 記全體實數所成的集為R; 且 ,那么我
們把集
![集族](/img/5/17e/wZwpmLxATOyUjNzgjN2YjN1UTM1QDN5MjM5ADMwAjMwUzL4YzL3gzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
稱為R中的 左閉右開區間,簡稱半開閉區間,R中全體半開區間構成一個半環。
例2 設R 為n維實數空間(即n維歐幾里得空間),又設
![集族](/img/2/e46/wZwpmLxEjNyYTO0gTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL4UzL2EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![集族](/img/5/b84/wZwpmL4cTO0kjM5EzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLxczLyczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/8/16c/wZwpmL3cDO2QTN0UjN2YjN1UTM1QDN5MjM5ADMwAjMwUzL1YzLyYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
為 中兩元素且 那么 Rn滿足下列關係
![集族](/img/4/725/wZwpmLzgDMxADM3AzN2YjN1UTM1QDN5MjM5ADMwAjMwUzLwczL0gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![集族](/img/5/3f3/wZwpmL4EDO1MjM4YTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL2UzLxUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
的元素 所組成的集稱為R 中的半開閉區間。
R 中全體半開閉區間構成一個半環。
![集族](/img/f/4f4/wZwpmL4gjN5cTN5QDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLzczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/f/4f4/wZwpmL4gjN5cTN5QDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLzczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/d/eaf/wZwpmL3czNwMjMyUDM0kTO0UTMyITNykTO0EDMwAjMwUzL1AzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/d/eaf/wZwpmL3czNwMjMyUDM0kTO0UTMyITNykTO0EDMwAjMwUzL1AzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
例3 設X為任意集,用 (X)表示X中全體子集組成的集族,則 (X)為半環,只含 集的集族{ }亦是一個半環。
![集族](/img/d/eaf/wZwpmL3czNwMjMyUDM0kTO0UTMyITNykTO0EDMwAjMwUzL1AzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
例4 設X為任意集,X中全體單點集連同 集構成一個半環。
環
![集族](/img/a/7ed/wZwpmLyQDM1gDOxQTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/d/796/wZwpmLzQzM4AjM4QTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzLyMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![集族](/img/0/792/wZwpmL2ATMwUTN3QzN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0czLyMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/a/7ed/wZwpmLyQDM1gDOxQTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
定義2 設 為不空集族,且滿足下述條件:若 ,則 ,那么我們稱 為 環.換句話說:如果一個非空集族對於並及差兩種運算是封閉的,那么它就是一個環。
例3中的集族也是環。
例5 設X是無窮集,則由X中一切有限子集組成的集族是環。
容易證明, 凡環必是半環,反之半環不一定是環.上面例1,例2及例4中的集族均是半環,但它們都不是環。
![集族](/img/a/7ed/wZwpmLyQDM1gDOxQTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/a/7ed/wZwpmLyQDM1gDOxQTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
定理1 設 為不空集族,則下列1) 2) 3)都是使 為環的充要條件:
![集族](/img/d/796/wZwpmLzQzM4AjM4QTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzLyMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![集族](/img/9/a2d/wZwpmL0YTMwczMzgDN2YjN1UTM1QDN5MjM5ADMwAjMwUzL4QzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/1/67a/wZwpmLxUzNzETN5kTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5UzLzczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
1) 若 ,則 , ;
![集族](/img/d/796/wZwpmLzQzM4AjM4QTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzLyMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![集族](/img/4/d74/wZwpmL2IDMyETNwQzN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0czL2IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![集族](/img/1/67a/wZwpmLxUzNzETN5kTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5UzLzczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
2) 若 ,則 , ;
![集族](/img/d/796/wZwpmLzQzM4AjM4QTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzLyMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![集族](/img/9/a2d/wZwpmL0YTMwczMzgDN2YjN1UTM1QDN5MjM5ADMwAjMwUzL4QzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
3) 若 ,則 ,
![集族](/img/d/796/wZwpmLzQzM4AjM4QTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzLyMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![集族](/img/6/c58/wZwpmL3EzNxYDN1gTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL4UzLwQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![集族](/img/4/d74/wZwpmL2IDMyETNwQzN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0czL2IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
若 且 ,則 ,
![集族](/img/d/796/wZwpmLzQzM4AjM4QTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzLyMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![集族](/img/b/e79/wZwpmL3MTO3UTMwkTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5UzL4EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/8/076/wZwpmLyEDN0EDMwkjN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5YzLyYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
若 且 ,則 。
![集族](/img/a/7ed/wZwpmLyQDM1gDOxQTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/e/831/wZwpmLyEDM0UTM2UjN2YjN1UTM1QDN5MjM5ADMwAjMwUzL1YzLzUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/a/7ed/wZwpmLyQDM1gDOxQTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
推論1 若 為環,則 且 對有限個集之並,交及兩集之差,對稱差運算封閉。
代數
定義3 含X的環稱為代數,由定理1的推論及
![集族](/img/3/e4f/wZwpmL4ITM2kDOwQTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
可知:代數對於有限個集之並及交,兩集之差及對稱差,余集等運算是封閉的。
![集族](/img/f/4f4/wZwpmL4gjN5cTN5QDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLzczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
顯然例3中的集族 (X)是代數。
倒6 設X是無窮集,X中全體有限子集及余集是有限集的集所組成的集族是一個代數。
![集族](/img/a/7ed/wZwpmLyQDM1gDOxQTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/a/7ed/wZwpmLyQDM1gDOxQTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL0UzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
顯然代數是環,反之環未必是代數,而且若 是環,那么由X和 中的集組成的集族也未必是代數.事實上例5中的集族是環但非代數,而且該集族增添元素X後所得的集族也不是一個代數,因為它對余運算不封閉。
![集族](/img/3/f51/wZwpmL0EzN3cjM3ETM5czN0UTMyITNykTO0EDMwAjMwUzLxEzL1czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
定理2 設 為不空集族,則下列命題等價:
![集族](/img/3/f51/wZwpmL0EzN3cjM3ETM5czN0UTMyITNykTO0EDMwAjMwUzLxEzL1czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
1) 含X的環;
![集族](/img/3/f51/wZwpmL0EzN3cjM3ETM5czN0UTMyITNykTO0EDMwAjMwUzLxEzL1czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/4/a5a/wZwpmL1gTM5QTOykDN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5QzLwQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![集族](/img/3/523/wZwpmL0QDO0EDM4kDN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5QzLyczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/c/dfc/wZwpmL0EzM4QTO0ITN2YjN1UTM1QDN5MjM5ADMwAjMwUzLyUzLzgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
2) 對並及余運算封閉,即若 ,則 , ;
![集族](/img/3/f51/wZwpmL0EzN3cjM3ETM5czN0UTMyITNykTO0EDMwAjMwUzLxEzL1czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/4/a5a/wZwpmL1gTM5QTOykDN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5QzLwQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![集族](/img/d/c91/wZwpmL4ITO0gTMxgzN2YjN1UTM1QDN5MjM5ADMwAjMwUzL4czLwIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/c/dfc/wZwpmL0EzM4QTO0ITN2YjN1UTM1QDN5MjM5ADMwAjMwUzLyUzLzgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
3) 對交及余運算封閉,即若 ,則 , 。
σ-代數
![集族](/img/f/9dd/wZwpmLxEDN0QzMyMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzL1MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
定義4假設 是Ω上的非空集族,如果:
![集族](/img/1/2bb/wZwpmLyIDN5ATMxkTN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5UzL3MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
(1) ;
![集族](/img/f/7a9/wZwpmL0ITMzAjN1UjN2YjN1UTM1QDN5MjM5ADMwAjMwUzL1YzL4QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![集族](/img/f/fc5/wZwpmL4ETMxQTMzEzN2YjN1UTM1QDN5MjM5ADMwAjMwUzLxczL2UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(2)它對於補運算封閉,即 ,有 ;
![集族](/img/5/f67/wZwpmLyMTN0AjNwkjN2YjN1UTM1QDN5MjM5ADMwAjMwUzL5YzLyczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/e/dfd/wZwpmLygTM2QDO5czN2YjN1UTM1QDN5MjM5ADMwAjMwUzL3czL3MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(3)它對於可列並運算封閉,即 有 。
![集族](/img/f/9dd/wZwpmLxEDN0QzMyMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzL1MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![集族](/img/7/9d5/wZwpmL1EDO4kTNwMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
則稱 是Ω上的 (西格瑪)-代數(algebra)或者 域(field)。
![集族](/img/0/a4f/wZwpmL2QjMzIDM4kTNwMDN0UTMyITNykTO0EDMwAjMwUzL5UzLxUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/7/9d5/wZwpmL1EDO4kTNwMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/0/a4f/wZwpmL2QjMzIDM4kTNwMDN0UTMyITNykTO0EDMwAjMwUzL5UzLxUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
例7由 Ω和 兩個集合組成的集族是 -代數。因為它們的補和可列並運算結果仍然是Ω和 。
![集族](/img/b/0cb/wZwpmLzIjN0UDN4gDN2YjN1UTM1QDN5MjM5ADMwAjMwUzL4QzLwMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![集族](/img/7/9d5/wZwpmL1EDO4kTNwMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/8/922/wZwpmL4czN0MDOxMzN2YjN1UTM1QDN5MjM5ADMwAjMwUzLzczL1IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![集族](/img/7/9d5/wZwpmL1EDO4kTNwMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/7/9d5/wZwpmL1EDO4kTNwMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(2)假設A是Ω的非空子集, 是任一包含A的-代數,那么 稱為包含A的最小 -代數,有時也稱為由A生成的-代數。
![集族](/img/f/4f4/wZwpmL4gjN5cTN5QDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLzczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/d/07d/wZwpmL3IDOxkDNzMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzL1MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/7/9d5/wZwpmL1EDO4kTNwMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/7/9d5/wZwpmL1EDO4kTNwMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![集族](/img/f/4f4/wZwpmL4gjN5cTN5QDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLzczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![集族](/img/f/4f4/wZwpmL4gjN5cTN5QDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLzczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(3)設Ω是全體實數R,令是R中一切開區間( )生成的 -代數(一切閉區間也可以),稱為R中的波雷耳(Borel) -代數,記為 (R), 中的元素(集合)稱為R中的波雷耳集。