名詞解釋
阻尼(zǔní),物理名詞,在電學中,差不多就是回響時間的意思。在機械物理學中,系統的能量的減小——阻尼振動不都是因“阻力”引起的,就機械振動而言,一種是因摩擦阻力生熱,使系統的機械能減小,轉化為內能,這種阻尼叫摩擦阻尼;另一種是系統引起周圍質點的震動,使系統的能量逐漸向四周輻射出去,變為波的能量,這種阻尼叫輻射阻尼。
摩擦的需要穩定的時間!指針萬用表錶針穩定住的時間!
在機械系統中,線性粘性阻尼是最常用的一種阻尼模型。阻尼力R的大小與運動質點的速度的大小成正比,方向相反,記作R=-C,C為粘性阻尼係數,其數值須由振動試驗確定。由於線性系統數學求解簡單,在工程上常將其他形式的阻尼按照它們在一個周期內能量損耗相等的原則,折算成等效粘性阻尼。物體的運動隨著系統阻尼係數的大小而改變。如在一個自由度的振動系統中,[973-01],稱臨界阻尼係數。式中為質點的質量,K為彈簧的剛度。實際的粘性阻尼係數C 與臨界阻尼係數C之比稱為阻尼比。<1稱欠阻尼,物體作對數衰減振動;>1稱過阻尼,物體沒有振動地緩慢返回平衡位置。欠阻尼對系統的固有頻率值影響甚小,但自由振動的振幅卻衰減得很快。阻尼還能使受迫振動的振幅在共振區附近顯著下降,在遠離共振區阻尼對振幅則影響不大。新出現的大阻尼材料和擠壓油膜軸承,有顯著減振效果。
在某些情況下,粘性阻尼並不能充分反映機械系統中能量耗散的實際情況。因此,在研究機械振動時,還建立有遲滯阻尼、比例阻尼和非線性阻尼等模型。
阻尼係數
定義阻尼係數是指放大器的額定負載(揚聲器)阻抗與功率放大器實際阻抗的比值。阻尼係數大表示功率放大器的輸出電阻小,阻尼係數是放大器在信號消失後控制揚聲器錐體運動的能力。具有高阻尼係數的放大器,對於揚聲器更象一個短路,在信號終止時能減小其振動。 功率放大器的輸出阻抗會直接影響揚聲器系統的低頻Q值,從而影響系統的低頻特性。揚聲器系統的Q值不宜過高,一般在0.5~l範圍內較好,功率放大器的輸出阻抗是使低頻Q值上升的因素,所以一般希望功率放大器的輸出阻抗小、阻尼係數大為好。阻尼係數一般在幾十到幾百之間,優質專業功率放大器的阻尼係數可高達200以上。
一個二階以及二階以上的系統,在系統運動過程中系統的內在能量的消耗有兩種情況:
1.系統能量保持不變;
2.系統能量逐漸減少;
阻尼係數就是表征能量減少這一特性的。
阻尼係數是擴音機的規格之一,它直接影響擴音機對喇叭的操控性。一般擴音機所提供的阻尼係數數據,都只公布某一個頻段的阻尼係數。
阻尼係數不是越高越好。
喇叭與擴音機之間的關係錯綜複雜,功率與靈敏度的配搭方式只是一個基本,而電流與喇叭之間更是無可捉摸,不能單從規格表上可以判斷出來,只能憑經驗和用耳去聽。除了電流捉摸不到之外,還有一樣就是阻尼係數(Damping Factor)。
但事實大多數擴音機的阻尼係數,在不同頻段時都會改變,故所提供的數據也只能作為一個大約指示。有些喇叭需要高的阻尼係數去控制單元的動作,如果配上阻尼不足的擴音機,單元會有失控的情況,出現多餘的諧震及音訊損失。
反過來說,如果一對不需高阻尼的喇叭配上高阻尼擴音機,單元由於受到高阻尼的控制,聲音會變死實實,音尾會極短。不當的阻尼配搭,會令到一對十分優良的喇叭,變成比鴨寮街出品也不如。
喇叭和擴音機的關係千變萬化,切忌一本通書睇到老,雖然有一定的法則,但都要有心理準備,隨時有意外的驚喜發生,所以要客觀去對待兩者之間的配搭。
想知道某擴音機配某喇叭是否合拍,除了問有豐富經驗的朋友之外,最好是自己去聽多一些不同的組合配搭。
阻尼係數KD定義為:KD=功放額定輸出阻抗(等於音箱額定阻抗)/功放輸出內阻。由於功放、輸出內阻實際上已成為音箱的電阻尼器件,KD值便決定了音箱所受的電阻尼量。KD值越大,電阻尼越重。功放的KD值並不是越大越好,KD值過大會使音箱電阻尼過重,以至使脈衝前沿建立時間增長,降低瞬態回響指標。因此在選取功放時不應片面追求大的KD值。作為家用高保真功放,阻尼系靈敏有一個經驗值可供參考;電晶體功放KD值大於或等於40,電子管功放KD值大於或等於6。保證放音的穩態特性與瞬態特性良好的基本條件,應注意音箱的等效力學品質因素(Qm)與放大器阻尼係數(KD)的配合,這種配合需將音箱的饋線作音響系統整體的一部分來考慮。音箱饋線的功率損失小0.5dB(約12%)即可達到這種配合。
一般來說,線越粗越好,最好是雙線分音,但是要求音箱是有雙線分音的分頻器,一般中高檔的都有4個接線座,上下的2個負極是獨立的,不連線在一起的,連線在一起的是假冒的。
在老燒友中,有一個不成文的認同,就是功放的價格應該至少是音箱價格的1.5-2倍,越是高檔的產品這個比例就越高。換句話說,在配套上,寧可“大馬拉小車”,不可“小馬拉大車”。這是因為往往越是高檔的音箱,一個只能發揮70%水平的高檔產品,往往反不如一個發揮100%的低檔產品。不過放到多媒體產品上,情況就倒了過來,越是高檔的產品,其功放占整套產品成本的比例往往越低。有些產品幾乎要用4000元檔次的功放推其裸箱,才能將單元的水平發揮個八九不離十,但配的僅僅是個最多值100元的功放。有些多媒體發燒友還往往看好這些產品,其實,如果不考慮摩機的話(當然,對於摩機來說,這樣的產品是最佳的,因為摩電路是可行的,摩單元,對大多數人是完全不可行的),這樣的產品不管在實際發揮的效果上,還是作為商品的設計上(特別是這一點),都是不理想也不合理的。說到底,還是文章的主旨——合理搭配,在功放上下功夫,用差單元當然是不好的,但反過來,將成本全花在單元上,配一個僅僅是剛剛能用的功放同樣是不可行的。單元雖然是多媒體音箱最重要的部件,但決不是單元好就是好箱子。
1.阻尼模型
結構阻尼是對振動結構所耗散的能量的測量,通常用振動一次的能量耗散率來表示結構阻尼的強弱。近幾十年來,人們提出了多種阻尼理論假設,在眾多的阻尼理論假設中,用得較多的是兩種線性阻尼理論:粘滯阻尼理論和復阻尼理論(滯變阻尼理論)。
復阻尼理論認為結構具有復剛度,在考慮阻尼時在彈性模量或剛度係數項前乘以復常數 即可,v為復阻尼係數。復阻尼理論對於一般的結構動力回響來說,計算過程非常複雜,因此,在動力回響分析中,復阻尼理論套用不多,本文限於篇幅,也就不再展開了。
粘滯阻尼理論假定阻尼力與運動速度成正比,通常是用不同頻率的阻尼比ζ來表征系統的阻尼:
粘滯阻尼理論最顯著的特點在於其阻尼力是直接根據與相對速度成正比的關係給出的,不論是簡諧振動或是非簡諧振動,都可直接寫出系統的運動方程,而且均為線性微分方程,給理論分析帶來了很大的方便。
在多自由度系統中採用等效粘滯模態阻尼,阻尼力向量的表達式為
若[C」可以通過模態向量正交化為對角矩陣時,則稱為正交阻尼或比例阻尼。反之,則稱之為非正交阻尼。正交阻尼原則上適用於阻尼特性分布比較均勻的工程結構,但由於其使用方便,分析人員對大部分橋樑都傾向於使用正交阻尼,非正交阻尼因為計算較為麻煩用得較少。
Rayleigh阻尼模型是廣泛採用的一種正交阻尼模型,其數學表達式如下:
C=a0M+a1K (2)
式中, a0和a1稱為Rayleigh阻尼常數。
在Rayleigh阻尼模型下,各階阻尼比可表示為式中ζi稱為第i階振型的模態阻尼比,因此若已知任意兩階振型的阻尼比ζi和ζj,則可定出阻尼常數,確定了a0和al之後,即可確定出各階振型的模態阻尼比,並確定阻尼矩陣。
2.實際抗震分析中由於阻尼選取不同所產生的問題
目前,橋樑地震反應分析一般以直接積分的時程分析方法為主。其阻尼模型取Rayleigh阻尼模型,並以主塔或主梁的兩個較低階振型頻率ωi和ωj對應的阻尼比作為ζi和ζj,接式(3)和式(4) 求出其餘各階頻率的阻尼比,並求出阻尼矩陣代人動力方程,用直接積分的方法求解動力方程。這樣處理阻尼雖然非常簡單,但也產生了以下兩個不可忽視的問題:
(1)如前所述,Rayleigh阻尼作為一種正交阻尼,適用於阻尼特性分布非常均勻的工程結構。但是大跨橋樑一般來說都不能算作非常均勻的結構。例如,為了提高橋樑的跨越能力,主梁一般採用鋼箱梁或鋼混疊合梁,而主塔和邊墩則採用鋼筋混凝土材料,兩者的阻尼特性相差比較大。即使主梁材料特性與主塔差不多,大跨橋樑由於抗風和抗震的要求,經常會在橋樑結構的某些部位加有人工阻尼裝置,比如橋墩上安放高阻尼的抗震支座、橋塔上安放控制振動的裝置TMD等,這都會產生摩擦阻尼或集中阻尼從而造成阻尼特性的不均勻分布。這樣的阻尼均勻性前提得不到滿足的情況下,仍按照 Rayleigh阻尼模型去計算各階振型對應的阻尼比勢必會造成除ωi和ωj兩階之外其他各階振型阻尼比與真實值有或多或少的差別。
(2)根據同濟大學土木防災國家重點實驗室對國內幾十座大跨橋樑進行抗震分析後總結的經驗,邊墩。輔助墩等部位是大跨橋樑抗震設施的重點。但是採用Rayleigh阻尼模型時,用於計算其他各階振型阻尼比的ωi和ωj一般取的是較低階的振型,而邊墩輔助墩的振動一般都發生在高階振型。根據Rayleigh阻尼模型圖,可以看出離ωi和ωj越遠的振型,其阻尼比就越不準,而且隨著圖上阻尼比按頻率增加的速度越來越快,邊墩部分振動頻率對應的阻尼比比實際值往往偏大,從這一點講會導致邊墩部分反應的計算結果偏於不安全。
一些橋樑抗震研究人員已經注意到了以上兩個問題,他們採取的措施是根據分析的部位不斷變換所選擇的ωi和ωj,比如計算橋塔的縱向地震反應時就選擇對橋塔的縱向反應起主要作用的兩階頻率作為ωi和ωj,來計算其它各階阻尼比,計算其它地震反應時也依此類推。這樣就需要分析人員不斷的重複選擇。和約和進行時程計算,十分繁瑣。
3.解決方法
由以上論述,我們已經了解到阻尼是一個非常複雜的問題,僅僅依靠Rayleigh阻尼模型,會對大跨橋樑尤其是邊墩輔助墩等部位的地震反應分析出現不應有的誤差。因此,我們嘗試尋找一種既不過分繁瑣又比較準確的方法。
在前面的論述中,我們發現阻尼比是反應阻尼的一個方便而有效的量,它把阻尼特性和振型頻率聯繫起來,使得動力方程分析起來更為簡單,而且阻尼比可以通過橋樑實測測出。
如果我們直接指定對橋塔。主梁、邊墩等重要部位反應起主要作用的一些振型頻率的阻尼比,而對其餘各階振型頻率的阻尼比採用線性內插的方法確定,這樣做也可以形成阻尼比矩陣。由於我們通過以前的工程實例發現結構各部位的反應來說少數幾階振型的貢獻最為顯著(這些振型的貢獻占到70%~ 80%,甚至更多),因此,這樣做能夠保證計算的正確性,而且並不繁瑣,此對,以實測試驗數據作為基礎,更增加了其準確性。同濟大學橋樑系近十幾年來,通過為國內幾十座大型橋樑進行竣工檢測、成橋檢測積累了大量的阻尼實測資料,並有研究人員準備把這些阻尼資料整理形成橋樑阻尼資料庫。有了這些數據資料為基礎,通過指定主要振型頻率阻尼比,來計算結構動力反應是行得通的,並且結合下面的振型疊加法,會使計算更加簡便。
阻尼作用
阻尼對能量的作用就是阻尼作用。