希爾伯特空間表示定理
這個定理建立了希爾伯特空間與它的連續對偶空間的一個重要聯繫:如果底域是實數,兩者是等距同構;如果域是複數,兩者是等距反同構。如下所述,(反)同構是特別自然的。
![里斯定理](/img/0/baf/wZwpmLwIDO4ETM5kDM5czN0UTMyITNykTO0EDMwAjMwUzL5AzLwEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/e/7e6/wZwpmLxUDN4kDO2ITN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyUzL1AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![里斯定理](/img/0/baf/wZwpmLwIDO4ETM5kDM5czN0UTMyITNykTO0EDMwAjMwUzL5AzLwEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/c/1e8/wZwpmL1AjM2YDO4MDM0kTO0UTMyITNykTO0EDMwAjMwUzLzAzL2EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/0/bd3/wZwpmL0MDM3gjN4MDOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL4MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![里斯定理](/img/1/036/wZwpmL3QzM5YjNzMjM0EDN0UTMyITNykTO0EDMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/0/baf/wZwpmLwIDO4ETM5kDM5czN0UTMyITNykTO0EDMwAjMwUzL5AzLwEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/6/826/wZwpmLxEzMxkDN1IzN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyczLzQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
設 是一個希爾伯特空間,令 表示它的對偶空間,由從 到域 或 的所有連續線性泛函。如果 是 中一個元素,則函式 定義為
![里斯定理](/img/9/d6b/wZwpmLxQDMwMDNxUTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL1UzL2czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/e/7e6/wZwpmLxUDN4kDO2ITN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyUzL1AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![里斯定理](/img/e/a9b/wZwpmL3YTN1IDOwYzM3UzM1UTM1QDN5MjM5ADMwAjMwUzL2MzL3EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![里斯定理](/img/e/7e6/wZwpmLxUDN4kDO2ITN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyUzL1AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
是 的一個元素,這裡 表示希爾伯特空間的內積。里斯表示定理斷言 中任何元素都能惟一地寫成這種形式。
定理:映射
![里斯定理](/img/0/449/wZwpmL2gTO1UTN2EjN0MTN1UTM1QDN5MjM5ADMwAjMwUzLxYzL1IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
是一個等距(反)同構,這就是說:
![里斯定理](/img/d/453/wZwpmLzUzNxYDNxcTOxMzM1UTM1QDN5MjM5ADMwAjMwUzL3kzL4QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
是雙射。
![里斯定理](/img/1/036/wZwpmL3QzM5YjNzMjM0EDN0UTMyITNykTO0EDMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/2/55a/wZwpmLwgTN3YjMzQDNzEzM1UTM1QDN5MjM5ADMwAjMwUzL0QzLwUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![里斯定理](/img/e/267/wZwpmLzczNxEzMxUDN0MTN1UTM1QDN5MjM5ADMwAjMwUzL1QzLyEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
的範數與 的範數相等: 。
![里斯定理](/img/d/453/wZwpmLzUzNxYDNxcTOxMzM1UTM1QDN5MjM5ADMwAjMwUzL3kzL4QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/4/80c/wZwpmL3UzMxMjM2YjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL2YzLzMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
可加: 。
![里斯定理](/img/c/1e8/wZwpmL1AjM2YDO4MDM0kTO0UTMyITNykTO0EDMwAjMwUzLzAzL2EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/9/f83/wZwpmL3AzNyITMxMzN0MTN1UTM1QDN5MjM5ADMwAjMwUzLzczL4gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/3/2f8/wZwpmLwIDNxAjMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
如果底域是 ,則 對所有實數 。
![里斯定理](/img/0/bd3/wZwpmL0MDM3gjN4MDOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL4MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![里斯定理](/img/3/0b1/wZwpmLygzNzgTO3gjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL4YzL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/3/2f8/wZwpmLwIDNxAjMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/4/3e9/wZwpmLyYDN2UDMzUjN2UzM1UTM1QDN5MjM5ADMwAjMwUzL1YzLxgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/3/2f8/wZwpmLwIDNxAjMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
如果底域是 ,則 對所有複數 ,這裡 表示 的復共軛。
![里斯定理](/img/d/453/wZwpmLzUzNxYDNxcTOxMzM1UTM1QDN5MjM5ADMwAjMwUzL3kzL4QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/e/7e6/wZwpmLxUDN4kDO2ITN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyUzL1AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![里斯定理](/img/d/eaf/wZwpmL3czNwMjMyUDM0kTO0UTMyITNykTO0EDMwAjMwUzL1AzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/d/eaf/wZwpmL3czNwMjMyUDM0kTO0UTMyITNykTO0EDMwAjMwUzL1AzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/d/348/wZwpmL1ATO4gTOwkzN4MTN0UTMyITNykTO0EDMwAjMwUzL5czLxczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/d/574/wZwpmL4czM1kzMzADN0MTN1UTM1QDN5MjM5ADMwAjMwUzLwQzLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/d/e97/wZwpmLygDOzEjM3gjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL4YzLyUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
的逆映射可以描述為: 給定 中一個元素 ,核 的正交補是H的一維子空間。取那個子空間中一個非零元素,令 。則 。
![里斯定理](/img/e/23e/wZwpmL3gzMzkDN5YDN0MTN1UTM1QDN5MjM5ADMwAjMwUzL2QzLxEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/0/083/wZwpmLxIDOyYDO2UjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL1YzL2EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/b/cd4/wZwpmLxcTNyUjNwMDO4EDN0UTMyITNykTO0EDMwAjMwUzLzgzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/b/eaa/wZwpmL0ATMzEzM2QTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL0UzLyMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
歷史上,通常認為這個定理同時由里斯和弗雷歇在1907年發現(見參考文獻)。格雷(Gray)在評論從他認為是原型的里斯(1909)一文到里斯表示定理的發展時說:“給定運算 ,可以構造有界變差函式 ,使得無論連續函式 是什麼,都有
![里斯定理](/img/4/ba0/wZwpmLyUjN2gjM3kjMzATN1UTM1QDN5MjM5ADMwAjMwUzL5IzL0YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/4/bb2/wZwpmLwAjNwgTMzUjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL1YzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
在量子力學的數學處理中,這個定理可以視為流行的狄拉克符號記法的根據。當定理成立時,每個右括弧 有一個相應的左括弧 ,對應是清楚的。但是存在拓撲向量空間,比如核空間(Kernel space),里斯表示定理不成立,在這樣的情形狄拉克符號變得不合適 。
Cc(X) 上線性泛函的表示定理
![里斯定理](/img/8/920/wZwpmL4MDNwkjNzMzN0MTN1UTM1QDN5MjM5ADMwAjMwUzLzczLxgzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![里斯定理](/img/8/920/wZwpmL4MDNwkjNzMzN0MTN1UTM1QDN5MjM5ADMwAjMwUzLzczLxgzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
下面的定理表示出 上的正線性泛函,緊支集連續復值函式空間。下面所說的波萊爾集表示由開集生成的σ-代數。
![里斯定理](/img/d/248/wZwpmL4czMxQDOwITO5ADN0UTMyITNykTO0EDMwAjMwUzLykzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/0/588/wZwpmL3gDM3MDM4MDMwEDN0UTMyITNykTO0EDMwAjMwUzLzAzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
局部緊豪斯多夫空間 上一個非負可數可加波萊爾測度是 正規的若且唯若
![里斯定理](/img/e/3e5/wZwpmLyETM3MTO1cjN1IDN0UTMyITNykTO0EDMwAjMwUzL3YzLygzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
對所有緊集 ;
![里斯定理](/img/b/b17/wZwpmLyIDN2UTN1MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL1MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
對每個波萊爾集,
![里斯定理](/img/3/10c/wZwpmLyIjM0ATMwEzN0MTN1UTM1QDN5MjM5ADMwAjMwUzLxczLyAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/f/8ce/wZwpmLzITO4EDO5cDN0MTN1UTM1QDN5MjM5ADMwAjMwUzL3QzL2UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
關係
![里斯定理](/img/b/b17/wZwpmLyIDN2UTN1MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL1MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/b/b17/wZwpmLyIDN2UTN1MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL1MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/f/d77/wZwpmLyYjMzUTM3ATN0MTN1UTM1QDN5MjM5ADMwAjMwUzLwUzLwgzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
成立只要是開集和是波萊爾集且 。
![里斯定理](/img/d/248/wZwpmL4czMxQDOwITO5ADN0UTMyITNykTO0EDMwAjMwUzLykzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/8/920/wZwpmL4MDNwkjNzMzN0MTN1UTM1QDN5MjM5ADMwAjMwUzLzczLxgzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![里斯定理](/img/0/588/wZwpmL3gDM3MDM4MDMwEDN0UTMyITNykTO0EDMwAjMwUzLzAzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
定理:設是一個局部緊豪斯多夫空間。對 上任何正線性泛函ψ,在上存在惟一的波萊爾正則測度 使得
![里斯定理](/img/7/d24/wZwpmLwATN3UTNyIjN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyYzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![里斯定理](/img/6/474/wZwpmLzITM5cTNzQTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL0UzL1YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
對所有 。
![里斯定理](/img/2/be4/wZwpmL2EzN3ITMxUjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL1YzL0EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![里斯定理](/img/d/248/wZwpmL4czMxQDOwITO5ADN0UTMyITNykTO0EDMwAjMwUzLykzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
進入測度論的一個途徑是從拉東測度開始,定義為 上一個正線性泛函。這種方式由布爾巴基採取;這裡顯然假設首先是一個拓撲空間,而不僅是一個集合。對局部緊空間,重新得到了一個積分理論。
C0(X) 的對偶空間的表示定理
![里斯定理](/img/b/aa6/wZwpmLwETN1cTM3kjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5YzLwgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/b/aa6/wZwpmLwETN1cTM3kjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5YzLwgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/d/248/wZwpmL4czMxQDOwITO5ADN0UTMyITNykTO0EDMwAjMwUzLykzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
下面定理也稱為里斯-馬爾可夫定理,給出了 的對偶空間的一個具體實現, 上在無窮遠趨於零的連續函式。定理陳述中的波萊爾集契約樣指由開集生成的 σ-代數。結論與上一節類似,但不能包含在前一個結果之中。參見下面的技術性注釋。
![里斯定理](/img/0/588/wZwpmL3gDM3MDM4MDMwEDN0UTMyITNykTO0EDMwAjMwUzLzAzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/0/588/wZwpmL3gDM3MDM4MDMwEDN0UTMyITNykTO0EDMwAjMwUzLzAzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/0/588/wZwpmL3gDM3MDM4MDMwEDN0UTMyITNykTO0EDMwAjMwUzLzAzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
如果 是一個復值可數可加波萊爾測度, 是正則的若且唯若非負可數可加測度 | | 正則(上一節所定義的)。
![里斯定理](/img/d/248/wZwpmL4czMxQDOwITO5ADN0UTMyITNykTO0EDMwAjMwUzLykzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/8/de0/wZwpmL1czM4QjM0gTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL4kzL3czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/d/248/wZwpmL4czMxQDOwITO5ADN0UTMyITNykTO0EDMwAjMwUzLykzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/0/588/wZwpmL3gDM3MDM4MDMwEDN0UTMyITNykTO0EDMwAjMwUzLzAzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
定理:設是一個局部緊豪斯多夫空間。對 上任何連續線性泛函ψ,存在 上惟一正則可數可加波萊爾測度 使得
![里斯定理](/img/7/d24/wZwpmLwATN3UTNyIjN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyYzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![里斯定理](/img/c/6c2/wZwpmL4ATM2cTOyQTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL0UzL2QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![里斯定理](/img/0/588/wZwpmL3gDM3MDM4MDMwEDN0UTMyITNykTO0EDMwAjMwUzLzAzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
對所有 。ψ 的範數作為線性泛函是 的全變差(total variation),即
![里斯定理](/img/c/db4/wZwpmLyQDM5QzN2kjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5YzLxMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![里斯定理](/img/0/588/wZwpmL3gDM3MDM4MDMwEDN0UTMyITNykTO0EDMwAjMwUzLzAzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
最後,ψ 是正的若且唯若測度 是非負的。
![里斯定理](/img/b/aa6/wZwpmLwETN1cTM3kjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5YzLwgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/b/aa6/wZwpmLwETN1cTM3kjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5YzLwgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/b/aa6/wZwpmLwETN1cTM3kjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5YzLwgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![里斯定理](/img/b/aa6/wZwpmLwETN1cTM3kjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5YzLwgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
注: 上任何有界線性泛函惟一延拓為 上有界線性泛函,因為後一個空間是前者的閉包。但是 上一個無界正線性泛函不能延拓為 上一個有界線性泛函。因此前兩個結論套用的情形稍微不同。