個人經歷
1992年蘭州大學理論物理學士,1995年蘭州大學理論物理碩士, 1999年蘭州大學和德國Giessen 大學聯合培養博士,1999年中科院蘭州近物所博士後,2001年中科院理論物理研究所博士後,2003年中科院理論物理研究所副研究員。1999年開始蘭州大學助教,講師,副教授。2006年蘭州大學教授。
從事凝聚態理論研究工作,在強關聯電子系統、高溫超導、介觀輸運,非線性系統及數值計算方法的發展及套用等方面共發表40餘篇SCI文章, 其中物理專業頂級期刊Phys. Rev. Lett.文章5篇。與人合作,較有代表性的工作有:在國際上較早開展與時間相關的密度矩陣重正化群的研究,提出數值精確處理非平衡態輸運的新方法;建立電子型摻雜銅基超導體唯象兩帶模型,正確解釋超流密度的低溫行為,解決了該體系的超導配對對稱性的爭論;根據銅基空穴型摻雜超導體電子結構特點,預言c-軸電阻的普適標度行為,並解釋了實驗數據;分析銅基空穴型摻雜超導體正常態大量的輸運實驗數據,提出贗能隙是支配輸運行為重要的能量尺度;建立描述單雜質Anderson模型的Fano共振理論,統一解釋了不同過渡金屬原子在金屬表面的掃描隧道譜實驗;預言了具有自旋軌道耦合的碳納米管量子點系統kondo效應的精細結構。
主持完成國家自然科學基金項目“電子型高溫超導體電子配對對稱性研究”(2005-2007),“關聯動力學在凝聚態及核物理中的套用研究”(2001-2003),參與完成國家自然科學基金重點項目“共軛分子體系電子關聯與激發態研究”(2005-2008)。教育部“優秀青年教師計畫”(2001-2003),入選2006年教育部“新世紀人才計畫”。目前主持國家自然科學基金項目“電子型高溫超導體微觀兩帶模型研究”(2009-2011),參與國家自然科學基金重點項目“密度矩陣重正化群方法及其在關聯量子系統中的套用”(2010-2013)。
研究方向
交叉學科研究中心主要研究方向:
1)強關聯電子系統與高溫超導
2)介觀輸運與動力學控制
3)密度矩陣重正化群算法與套用
4)量子信息與量子光學
研究工作
中心開展的主要工作:
1)銅基高溫超導體的微觀模型研究(實驗與理論的分析計算,很辛苦的工作且需要長期的積累)。 2)Kondo問題研究(自旋的禁止問題,曾或將在很多系統中觀察到。實驗現象豐富,但真正的理論進展並不容易)。
3)量子化學密度矩陣重正化群算法研究和套用(一項從2004年就開始的工作,...)。
4)量子退相干和糾纏動力學(量子信息,量子計算實現之前必須解決的問題 ... )。
5)非自治(或時間相關)量子系統的動力學控制(好像跟現代技術的發展與認識自然和改造自然的理念有關)。
研究組成員
副教授:安均鴻(碩士生導師),房鐵峰
博士研究生:丁彩英,李林
碩士研究生:童慶軍,成娟娟,張芳,程晨,阿繼凱
發表論文
1. Hong-Gangluo, Dun Zhao, and Xu-Gang He, Exactly controllable transmission of nonautonomous optical solitons, PHYSICAL REVIEW A 79, 063802 (2009);
2. Xu-Gang He, Dun Zhao, Lin Li, and Hong-Gang Luo, Engineering integrable nonautonomous nonlinear Schrödinger equations, PHYSICAL REVIEW E 79, 056610 (2009);
3. Xing-Hua Hu, Xiao-Fei Zhang, Dun Zhao, Hong-Gang Luo, and W. M. Liu, Dynamics and modulation of ring dark solitons in two-dimensional Bose-Einstein condensates with tunable interaction, PHYSICAL REVIEW A 79, 023619 (2009);
4. X.-G. He, D. Zhao, and H.-G. Luo, Transformation from the nonautonomous to standard NLS equations, Eur. Phys. J. D 53, 213 (2009) ;
5. Xing-Hua Hu, Xiao-Fei Zhang, Dun Zhao, Hong-Gang Luo, and W. M. Liu, Dynamics and modulation of ring dark solitons in two-dimensional Bose-Einstein condensates with tunable interaction, Phys. Rev. A 79, 023619 (2009);
6. T. Xiang, H. G. Luo, D. H. Lu, K. M. Shen, and Z. X. Shen, Intrinsic electron and hole bands in electron-doped cuprate superconductors, Phys. Rev. B 79, 014524 (2009);
7. Tie-Feng Fang, Wei Zuo, and Hong-Gang Luo, Kondo Effect in Carbon Nanotube Quantum Dots with Spin-Orbit Coupling, Phys. Rev. Lett. 101, 246805 (2008).
8. Dun Zhao, Hong-Gang Luo, Hua-Yue Chai, Integrability of the Gross–Pitaevskii equation with Feshbach resonance management, Physics Letters A 372 (2008) 5644–5650.
9. ZHAO Dun, WANG Shun-Jin, and LUO Hong-Gang, Differential Representations of SO(4) Dynamical Group, Commun. Theor. Phys. (Beijing, China) 50 (2008) pp. 63–68.
10. H. G. Luo, Y. H. Su, and T. Xiang, Scaling analysis of normal-state properties of high-temperature superconductors, Phys. Rev. B 77, 014529 (2008).
11. Dun Zhao, S. J. Wang, and H. G. Luo, The calculation of differential representations of dynamical Lorentz group SO(3,1) as an example, Acta Mathematica Scientia Series 27 A(5): 819-829 (2007).
12. J. H. An, S. J. Wang, and H. G. Luo,entanglementdynamics ofQubits in a common environment, Physica A 382, 753-764 (2007).
13. C. S. Liu, H. G. Luo, and W. C. Wu, Patter formation of indirect excitons in coupled quantum wells, J. Phys.: Condens. Matter 18, 9659-9668 (2006).
14. C. S. Liu, H. G. Luo, W. C. Wu, and T. Xiang, Two-band model of Raman scattering on electron-doped high-Tc superconductors, Phys. Rev. B 73, 174517 (2006).
15. Y. H. Su, H. G. Luo, and T. Xiang, Universal scaling behavior of the c-axis resistivity of high-temperature superconductors, Phys. Rev. B 73, 134510 (2006).
16. H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, Luo et al. reply, Phys. Rev. Lett. 96, 019702 (2006).
17. J. H. An, S. J. Wang, and H. G. Luo, Constraint dynamics and tracking control to coherence of a thermal dissipative qubit, Chin. Phys. Lett. 22, 3009-3012 (2005).
18. W. Q. Ran, J. Chang, H. T. Lu, Y. H. Su, H. G. Luo, and T. Xiang, Geometrical structure effect on the localization length of carbon nanotubes, Chin. Phys. Lett. 22, 2375-2378 (2005).
19. H. T. Lu, Y. H. Su, L. Q. Sun, J. Chang, C. S. Liu, H. G. Luo, and T. Xiang, Thermodynamic properties of tetrameric bond-alternating spin chains, Phy. Rev. B 71, 144426 (2005).
20. Jun-Hong An, Shun-Jin Wang, and Hong-Gang Luo, Entanglement production and decoherence-free subspace of two single-mode cavities embedded in a common environment, J. Phys. A: Math. Gen. 38, 3579–3593 (2005).
21. H. G. Luo and T. Xiang, Superfluid Response in Electron-Doped Cuprate Superconductors, Phys. Rev. Lett. 94, 027001 (2005).
22. Dun Zhao, Hong-Gang Luo, Shun-Jin Wang, Wei Zuo, A direct truncation method for finding abundant exact solutions and application to the one-dimensional higher-order Schrodinger equation, Chaos, Solitons and Fractals, 24, 533-547 (2005).
23. Jun-Hong An, Shun-JinWang, Hong-Gang Luo, and Cheng-Long Jia, A two-level atom coupled to a controllable squeezed vacuum field reservoir, J. Opt. B: Quantum Semiclass. Opt. 6, 510-516 (2004).
24. J. Chang, Y. H. Su, H. G. Luo, H. T. Lu, and T. Xiang, Effect ofimpurityresonance states on the NMR spectra of high-Tc cuprates, Phys. Rev. B 70, 212507 (2004).
25. H.G. Luo, T. Xiang, X.Q. Wang, Z. B. Su, and L. Yu, Fano resonance in the Anderson impurity systems, Phys. Rev. Lett. 92, 256602 (2004).
26. Shun-Jin Wang, Cheng-Long Jia, Jun-Hong An, and Hong-Gang Luo, “Spin switch and qubit register from a spin particle controlled by a time-dependent magnetic field”, Chin. Phys. Lett. 21, 778 (2004).
27. Cheng-Long Jia, Shun-Jin Wang, Hong-Gang Luo, and Jun-Hong An, “Electron spin transport through an Aharonov-Bohm ring – a spin switch”, J. Phys.: Condens. Matter 16, 2043 (2004).
28. Jun-Hong An, Shun-Jin Wang, Hong-Gang Luo, Cheng-Long Jia , “Production of squeezed state of single mode cavity field by the coupling of squeezed vacuum field reservoir in nonautonomous case”, Chin. Phys. Lett. 21 , 1 (2004).
29. Y. H. Su, J. Chang, H. T. Lu, H. G. Luo, and T. Xiang, “Bilayersplittingspectroscopy of double-layer high Tc cuprates”, Phys. Rev. B 68, 212501 (2003).
30. H. G. Luo, T. Xiang, and X. Q. Wang, “Comment on “Time-Dependent Density-Matrix Renormalization Group: A Systematic Method for the Study of Quantum Many-Body Out-of-Equilibrium Systems””, Phys. Rev. Lett. 91, 049701(2003).
31. S. J. Wang, C. L. Jia, D. Zhao, H. G. Luo, and J. H. An, “Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate”, Phys. Rev. A 68, 015601 (2003).
32. S. J. Wang, J. H. An, H. G. Luo, and C. L. Jia, “Dynamical symmetry and analytical solutions of the non-autonomous quantum master equation of the dissipative two-level system: decoherence of the quantum register”, J. Phys. A: Math. Gen. 36, 829 (2003).
33. H. G. Luo, S. J. Wang, and C. L. Jia, “Magnetic flux effects in an Aharonov-Bohm ring with aninsertedquantum dot”, Phys. Rev. B 66, 235311 (2002).
34. H. G. Luo, C. L. Jia, S. J. Wang, and W. Zuo, “Nonlocal effects in the metal-insulator transition beyond the Hubbard III approximation”, Phys. Rev. B 65, 075108 (2002).
35. S. J. Wang, D. Zhao, H. G. Luo, L. X. Cen, and C. L. Jia, “Exact solution to the von Neumann equation of the quantum characteristic function of the two-level Jaynes-Cummings model”, Phys. Rev. A 64, 052102 (2001).
36. H. G. Luo and S. J. Wang, “Equation-of-motion approach to theanharmonicoscillator”, Phys. Rev. B 62, 5341 (2000).
37. H. G. Luo and S. J. Wang, “Specific heat of the periodic Anderson model at finite U”, Phys. Rev. B 62, 1485 (2000).
38. H. G. Luo and S. J. Wang, “Equation of motion approach to the two-dimensional Hubbard model”, Phys, Rev. B 61, 13418 (2000).
39. H. G. Luo and S. J. Wang, “Higher-order correlation effects to the solution of the Hubbard model”, Phys. Rev. B 61, 5158 (2000).
40. L. Yang, K. Q. Yang, and H. G. Luo, “Complex version of KdV equation and its exact solution”, Phys. Lett. A 267, 231 (2000).
41. H. G. Luo and S. J. Wang, “Moment-conserving decoupling approach to the many-body systems”, Phys. Rev. B 60, 15480 (1999).
42. H. G. Luo, W. Cassing, and S. J. Wang, “Damping of collective nuclear motion and thermodynamic properties of nuclei beyond mean field”, Nucl. Phys. A 652, 164(1999).
43. H. G. Luo, Z. J. Ying, and S. J. Wang, “Equation of motion approach to the solution of the Anderson model”, Phys. Rev. B 59, 9710 (1999).
44. S. J. Wang, H. G. Luo, and W. Cassing, “Microscopic study of the giant resonance of the hot nuclei”, HEP & NP (in chinese) 24(10): 955 (2000).
45. H. G. Luo and K. Q. Yang, “Spectral methods solution of a class of nonlinear equations”, Journal of Lanzhou University (Natural Science) (in chinese) V31 (3), 58 (1995).
46. K. Q. Yang and H. G. Luo, “Exact solution of a class of nonlinear equations”, Journal of Lanzhou University (Natural Science) (in chinese) V31 (1), 35 (1995).