羧基的保護
在肽合成中,除了羧基組分的羧基需要活化來進行接肽以外,其他的不反應的羧基都存在一個需要保護的問題。羧基被保護後,除了可以防止在接肽反應中不需要反應的羧基被活化帶來副反應以外,還能使氨基組分的氨基不能同羧基形成內鹽而完全游離出來以便於同羧基組分反應形成肽鍵。當用活化酯法和混合酸酐法接肽時,可採用將氨基組分的羧基同有機鹼成鹽的形式來進行反應。由於羧基自由的肽在有機溶劑中的溶解度比酯的溶解度要小,從而給接肽反應和產物的純化分離帶來不便。
肽鍵生成的方法
肽鍵的形成是氨基在羧基上的親核取代反應,涉及一個四面體中間體,然而,在室溫下,羧酸與氨或胺的反應產物是銨鹽而不是醯胺。因此,羧基組分必須在肽鍵形成前活化。此外,肽縮合反應必須在溫和的反應條件和室溫下進行。目前,形成肽鍵最常用的方法是碳二亞胺法、混合酸酐法、活化酯法、迭氮物法等 。
活化酯法
1951年魏蘭德(Wieland)和謝飛(Shoefr)採用硫代苯酯,許為徹(Sehwyzer)1955年採用氰甲酯提高了酯的活性,從而可用於肽的合成,但比較成功的要算波丹斯基(Bdenaskzy)1955年發展的對硝基苯酯。N-保護胺基酸對硝基苯酯的活性很好,能在室溫條件下很快的與氨基組分反應得到很好的接肽產率。稍後,肯納(Knener)等人也發表了關於用取代苯酯作為活化酯報導。除了取代苯酯或硫代苯酯以外,可以用作為活化酯的還有N-保護胺基酸與烯醇類化合物形成的酯,與雜環上羥基形成的酯以及連線在固相載體上的活化酯等。活化酯的優點在於所用的N-保護胺基酸活化酯很多都能分離純化出來得到結晶的純品,而且比較穩定,能夠放置保存 。其與氨基組分縮合的反應速度,雖不及混合酸酐法和DCC法快,但也並不很慢,而且還可以加入適當的添加劑以催化反應的進行。在用活化酯法接肽時,氨基組分的末端羧基可以是保護的也可以是不保護的,對於一些側鏈功能團,如羥基、酚基等也並不要求一定要保護。這對肽合成方案的設計來說,就給了很大的方便。同醯氯和混合酸酐法相比,活化酯接肽的反應速率是比較慢的,隨著肽鏈的增長,溶液中反應物濃度的降低,反應速度將更慢。
碳二亞胺法(DCC法)
在多肽和蛋白質合成中,DCC法套用較廣泛。在多肽合成中最常用的是,N,N-二環己基碳二亞胺,簡稱DCC。DCC活化羧基的反應機理:N-保護的胺基酸同DCC反應首先生成活化中間體O-醯基脲,它實際上也可以看成是一種活化酯。此活化中間體與胺基酸酯反應則生成肽酯,並釋放出一分子的N,N-二環己基脲(DCU)。由於DCu在大多數有機溶劑中的溶解度很小,因而可以過濾除去,但殘留在溶劑中少量的DCU有時會混在連線產物中很難完全除盡。這時若採用很容易用酸洗除去水溶性碳二亞胺來代替DCC則可避免這個麻煩。
肽鍵可以通過O-醯基脲直接同胺反應或者先經過對稱酸酐再同胺反應生成。但究竟主要是通過哪條途徑,則同反應條件有關。在液相接肽反應中,可能主要是通過O-醯基脲同胺的直接反應。
混合酸酐法
混合酸酐法是50年代初期發展起來的。開始是用醯基胺基酸同二苯基磷酸形成的混合酸酐,然後是用同二苄基磷酸形成混合酸酐以及同苯甲酸形成的混合酸酐。當苄氧羰基胺基酸同苯甲酸形成的混合酸酐與氨基組分反應時,會形成氨基組分被苯甲醯化的副產物。為了抑制這個副反應,後來還改用了同羧基碳原子上電子密度較高的或空間位阻較大的其他羧酸形成的混合酸酐。另一方面,Wielnad和Boisosnnas則發展了用醯基胺基酸的三乙胺鹽與等當量氯甲酸乙酯反應形成混合酸酐,它同氨基組分能得到高的接肽產率。而用同氯甲酸異丁酯反應形成的混合酸酐則可以進一步提高產率。這也就是後來成功地廣泛用於多肽合成中的混合酸酐法。
迭氮物法
在1902年由Curtius建立起來的迭氮物法雖是一個比較古老的方法,但由於它最少引起消旋,而且能在液相法中用於大片段肽的合成,因而直到今天也仍然作為一個片段縮合的較好方法而被普遍採用。在胰島素、牛胰核糖核酸酶及其S-蛋白(104肽)、胰蛋白酶抑制劑、核糖核酸酶TI的合成中都曾經採用了這個方法。迭氮法的醯化反應比較溫和,在用迭氮物法接肽時,側鏈上的羥基、咪唑基和醯胺基可以不要保護,甚至羧基組分的側鏈羧基和a-羧基都可以不保護,而得到最少保護基的“赤足”肽。