概述
隨著發動機採用更加緊湊的設計和具有更大的比功率,發動機產生的廢熱密度也隨之明顯增大。一些關鍵區域,
如排氣門周圍散熱問題需優先考慮,冷卻系統即便出現小的故障也可能在這樣的區域造成災難性的後果。發動機冷卻系統的散熱能力一般應滿足發動機滿負荷時的散熱需求,因為此時發動機產生的熱量最大。然而,在部分負荷時,冷卻系統會發生功率損失,水泵所提供的冷卻液流量超過所需的流量。我們希望發動機冷啟動時間儘可能短。因為發動機怠速時排放的污染物較多,油耗也大。冷卻系統的結構對發動機的冷啟動時間有較大的影響。特點
傳統冷卻系統的作用是可靠地保護髮動機,而還應具有改善燃料經濟性和降低排放的作用。為此,現代冷卻系統要綜合考慮下面的因素:發動機內部的摩擦損失;冷卻系統水泵的功率;燃燒邊界條件,如燃燒室溫度、充量密度、充量溫度。
先進的冷卻系統採用系統化、模組化設計方法,統籌考慮每項影響因素,使冷卻系統既保證發動機正常工作,又提高發動機效率和減少排放。
溫度設定點
發動機工作溫度的極限值取決於排氣門周圍區域最高溫度。最理想的情況是按金屬溫度而不是冷卻液溫度控制冷卻系統,這樣才能更好地保護髮動機。由於冷卻系統設定的冷卻溫度是以滿負荷時最大散熱率為基礎,因此,發動機和冷卻系統在部分負荷時處於不太理想狀態,如市區行駛和低速行駛時,會產生高油耗和排放。
通過改變冷卻液溫度設定點可改善發動機和冷卻系統在部分負荷時的性能。根據排氣門周圍區域溫度極限值,可升高或降低冷卻液或金屬溫度設定點。升高或降低溫度點都各有特點,這取決於希望達到的目的。