奇異積分和函式的可微性

奇異積分和函式的可微性

《奇異積分和函式的可微性》是 2011年 世界圖書出版公司出版的圖書,作者是(美國)施泰恩(SteinE.M.) 。

基本信息

內容簡介

《奇異積分和函式的可微性(英文)(影印版)》內容簡介:ThisbookisanoutgrowthofacoursewhichIgaveatOrsayduringtheacademicyear1966.67MYpurposeinthoselectureswastopre-sentsomeoftherequiredbackgroundandatthesametimeclarifytheessentialunitythatexistsbetweenseveralrelatedareasofanalysis.Theseareasare:theexistenceandboundednessofsingularintegralop-erators;theboundarybehaviorofharmonicfunctions;anddifferentia-bilitypropertiesoffunctionsofseveralvariables.ASsuchthecommoncoreofthesetopicsmaybesaidtorepresentoneofthecentraldevelop-mentsinn.dimensionalFourieranalysisduringthelasttwentyyears,anditcanbeexpectedtohaveequalinfluenceinthefuture.Thesepos.

目錄

PREFACE

NOTATION

I.SOME FUNDAMENTAL NOTIONS OF REAL.VARIABLE THEORY

The maximal function

Behavior near general points of measurable sets

Decomposition in cubes of open sets in R”

An interpolation theorem for L

Further results

II.SINGULAR INTEGRALS

Review of certain aspects of harmonic analysis in R”

Singular integrals:the heart of the matter

Singular integrals:some extensions and variants of the

preceding

Singular integral operaters which commute with dilations

Vector.valued analogues

Further results

III.RIESZ TRANSFORMS,POLSSON INTEGRALS,AND SPHERICAI HARMONICS

The Riesz transforms

Poisson integrals and approximations to the identity

Higher Riesz transforms and spherical harmonics

Further results

IV.THE LITTLEWOOD.PALEY THEORY AND MULTIPLIERS

The Littlewood-Paley g-function

The functiong

Multipliers(first version)

Application of the partial sums operators

The dyadic decomposition

The Marcinkiewicz multiplier theorem

Further results

V.DIFFERENTIABlLITY PROPERTIES IN TERMS OF FUNCTION SPACES

Riesz potentials

The Sobolev spaces

BesseI potentials

The spaces of Lipschitz continuous functions

The spaces

Further results

VI.EXTENSIONS AND RESTRICTIONS

Decomposition of open sets into cubes

Extension theorems of Whitney type

Extension theorem for a domain with minimally smooth

boundary

Further results

VII.RETURN TO THE THEORY OF HARMONIC FUNCTIONS

Non-tangential convergence and Fatou'S theorem

The area integral

Application of the theory of H”spaces

Further results

VIII.DIFFERENTIATION OF FUNCTIONS

Several qotions of pointwise difierentiability

The splitting of functions

A characterization 0f difrerentiability

Desymmetrization principle

Another characterization of difirerentiabiliW

Further results

APPENDICES

Some Inequalities

The Marcinkiewicz Interpolation Theorem

Some Elementary Properties of Harmonic Functions

Inequalities for Rademacher Functions

BlBLl0GRAPHY

INDEX

相關詞條

相關搜尋

熱門詞條

聯絡我們