基本介紹
![囿空間](/img/c/826/wZwpmL4UDMxUDNxUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLwczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/d/248/wZwpmL4czMxQDOwITO5ADN0UTMyITNykTO0EDMwAjMwUzLykzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/c/826/wZwpmL4UDMxUDNxUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLwczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
定義1 若是局部凸空間,如果上不能引入更強的局部凸拓撲,使其有界集與有界集一致,則稱為 囿空間。
![囿空間](/img/b/2d4/wZwpmL0cTNzIzM5QjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0YzL1YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![囿空間](/img/b/2e1/wZwpmL3UzM2MzM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/c/c82/wZwpmLwATMwUTOwkzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLxEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
註:定義就是說,若,且有界集與有界集一致,則。
![囿空間](/img/c/826/wZwpmL4UDMxUDNxUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLwczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
定理1 若是局部凸空間,則下列等價;
(1) X是囿空間;
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(2) 吸收任意有界集的凸集都是0點鄰域;
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(3) 任何在有界集上取值有界的半范是連續的。
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/3/a39/wZwpmL1YjM1YTO4QjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0YzLyczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/b/1b9/wZwpmLzgTM1MDN5AjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwYzL0IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![囿空間](/img/b/1b9/wZwpmLzgTM1MDN5AjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwYzL0IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![囿空間](/img/b/2e1/wZwpmL3UzM2MzM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/b/2e1/wZwpmL3UzM2MzM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/b/2e1/wZwpmL3UzM2MzM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/7/d76/wZwpmLwgzM0EzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczLyMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
證明:① 若X是囿空間,且V是吸收任意有界集的凸集,若V不是0點鄰域,則在0點鄰域子基中補上得到集,以為0點鄰域子基得到新的局部凸拓撲,顯然嚴格強於,且與有同樣的有界集,這與囿空間定義矛盾,故(1)(2)。
![囿空間](/img/b/2e1/wZwpmL3UzM2MzM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/b/2e1/wZwpmL3UzM2MzM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/b/2e1/wZwpmL3UzM2MzM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/b/2e1/wZwpmL3UzM2MzM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/7/d76/wZwpmLwgzM0EzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczLyMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
② 若X不是囿空間,則在X中可引入局部凸拓撲,使嚴格強於,且與有同樣的有界集,從而必存在0點鄰域,它不是0點鄰域,故(2)(1)。
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/b/cfe/wZwpmL3IjM1ETO2QTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0kzLwYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/a/95f/wZwpmL4UjNyMTNzkzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czL2YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/c/9d7/wZwpmL2cDNyUDOwQzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL4czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/d/060/wZwpmLwUjN5gDN4AzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwczLxMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![囿空間](/img/8/632/wZwpmLxUDN0gTN4ADM3UzM1UTM1QDN5MjM5ADMwAjMwUzLwAzLwEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/a/6f3/wZwpmLxITM0UTMyQDO0YzM1UTM1QDN5MjM5ADMwAjMwUzL0gzL4EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![囿空間](/img/7/d76/wZwpmLwgzM0EzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczLyMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
③ 若X中吸收任意有界集的凸集是0點鄰域,又A是有界的。p是X的半范,且當時有,則。從而,故吸收任意有界集,因此,故p是連續的,所以(2)(3)。
![囿空間](/img/b/2d4/wZwpmL0cTNzIzM5QjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0YzL1YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![囿空間](/img/b/2e1/wZwpmL3UzM2MzM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/b/2e1/wZwpmL3UzM2MzM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/8/8bd/wZwpmL3cDO3UzNzgTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/8/8bd/wZwpmL3cDO3UzNzgTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
④ 若X不是囿空間,則存在局部凸拓撲,使與有同樣的有界集,且存在一個凸的均衡吸收集V,它是的0點鄰域而不是的0點鄰域,故是在每個有界集上取值有界的半范,但不是公連續的.故(3)專(1).口
![囿空間](/img/c/826/wZwpmL4UDMxUDNxUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLwczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/3/5f6/wZwpmLyQzN1MDOzIzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczLxAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/8/249/wZwpmL2EDO4UzN5UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzLzMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/3/5f6/wZwpmLyQzN1MDOzIzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczLxAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![囿空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/a/d6b/wZwpmLwczM1EDNxYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
註:任給局部凸空間,我們在X上可以引入一個局部凸拓撲,稱為,它是以吸收任何有界集的一切凸集為0點局部基。容易看到,是囿空間,有界集與有界集是一致的,且。
相關定理
定理2 任何賦可列半范的局部凸空間是囿空間,特別地,賦范空間是囿空間 。
證明:不妨設
![囿空間](/img/8/e73/wZwpmLzYTMwITO5UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzL2EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![囿空間](/img/8/8bd/wZwpmL3cDO3UzNzgTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzLzIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
若存在一個吸收任何有界集的凸集V,它不是0點鄰域,令是相應的Minkowski泛函(不妨設V是均衡的)。
對X中任何有界集E,由於V吸收E,故有
![囿空間](/img/0/bd0/wZwpmL4UTO3MjM4QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL4IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/5/7b1/wZwpmLxcTO0ETO0cDMyMzM1UTM1QDN5MjM5ADMwAjMwUzL3AzL2czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/c/f46/wZwpmLyETOzAjMwADO0YzM1UTM1QDN5MjM5ADMwAjMwUzLwgzLzMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![囿空間](/img/1/2e5/wZwpmLyYDMzgzMwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzL1IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/8/d3a/wZwpmL4gDO4ADO1kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLxYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/8/e9e/wZwpmL1gjM4YjMyMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzLwYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/7/a8a/wZwpmL0YDN1IjMwUzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1czLwgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![囿空間](/img/4/437/wZwpmLzQTN0IDM4gzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4czL1YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![囿空間](/img/9/fe1/wZwpmLwIDNyETN5EjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxYzL4MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
但由於V不是0點鄰域,故對任何正整數n及,有⊄,,從而存在,所以,,但,令,當時,由(1),
![囿空間](/img/1/a1a/wZwpmL0cTOyMTO0MDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL4QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/f/bf6/wZwpmLwIDMwgjM0kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL4gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![囿空間](/img/8/0f5/wZwpmLyEDOzAjM4czN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3czLxQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
故是X中有界集,但,故
![囿空間](/img/a/2c5/wZwpmLycTM0ATOyYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
這與(2)矛盾。
![囿空間](/img/c/826/wZwpmL4UDMxUDNxUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLwczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
定理3 設是局部凸空間,則X是囿空間若且唯若從X到任意局部凸空間Y的線性有界運算元是連續的。
![囿空間](/img/5/644/wZwpmLxUjNwMzM0cjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3YzLygzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/b/c42/wZwpmLxEDN4MDN5MzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzczLwUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/8/049/wZwpmLyIzM4kDM5AjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwYzL2UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![囿空間](/img/5/7b1/wZwpmLxcTO0ETO0cDMyMzM1UTM1QDN5MjM5ADMwAjMwUzL3AzL2czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/c/1b6/wZwpmLzYTOwkDNygjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLyYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![囿空間](/img/5/356/wZwpmL2YDMzETN4IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLyQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
證明:設X是囿空間,Y是局部凸空間,是線性有界運算元(有界指將有界集映成有界集)。設W是Y的0點凸鄰域,則是X中凸集,且吸收X中任意有界集(事實上,設E是X中有界集,則是Y中有界集,故存在,使,故),由於X是囿空間,故V是0點領域,從而T是連續的。
![囿空間](/img/f/dae/wZwpmLwUTN3kTMxUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLwUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/1/64a/wZwpmLxQTNzAjM4kTNwMDN0UTMyITNykTO0EDMwAjMwUzL5UzLxczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/8/249/wZwpmL2EDO4UzN5UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzLzMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/1/64a/wZwpmLxQTNzAjM4kTNwMDN0UTMyITNykTO0EDMwAjMwUzL5UzLxczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![囿空間](/img/7/19d/wZwpmL1cDMzYDMwIDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL2UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![囿空間](/img/8/fcd/wZwpmL2MTMzcjM5QjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0YzL4MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![囿空間](/img/c/87d/wZwpmLyYDMzYDN5EjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxYzL2MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![囿空間](/img/c/826/wZwpmL4UDMxUDNxUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLwczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
又令是恆等運算元,由定理1的注知道是有界線性運算元,是局部凸空間,由假設條件知是連續的。從而,但另一方面,顯然,故,從而是囿空間。
推論1若X是囿空間,則X上的每個有界線性泛函必是連續的。
![囿空間](/img/5/644/wZwpmLxUjNwMzM0cjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3YzLygzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
推論2 若X是Banach空間,Y是局部凸空間,則任何有界線性運算元必是連續的 。