嘉當空間

簡介

在n維空間裡,以(n-1)維超曲面領域的表面積概念為基礎而構成的幾何,稱n維嘉當空間幾何。設(x)=( x1,x2,…,xn)表示空間一點的坐標,(u)=(u1,u2,…,un)表示該點切空間的(n-1)維子空間的齊次坐標,(x,u)稱為點(x)的超平面素。以B表示超平面素所成的一個區域,採用一個在B是正則的而且取正值的函式L(x,u),這裡L關於ui是正齊一次的,L(x,ρu)=ρL(x,u),(ρ>0),並約定,在超平面素(x,u)的(n-1)維表面積元素為  為了改寫dO,設是光滑超曲面F的正則參數表示。從(n-1)×n矩陣刪去第k行,而且用(-1)k+1pk表示這樣得出的(n-1)階行列式。那么,從上列的約定便導出一個在有向超曲面F的區域上的(n-1)重積分 它表示了這個區域的“(n-1)維表面積”。  從基本函式 L(x,u)作 且令α=det|αik|,嘉當的測度張量可表成 這樣,這種空間微分幾何便有了發展的基礎,特別重要的是研究面積積分的第一和第二變分,以及極值離差理論,即能保持極值超曲面的無窮小變形的方程。

嘉當簡介

嘉當在1894年取得博士學位後,他在蒙比利艾和里昂任教,並於1903年在南錫當上教授。他在1909年到巴黎任教,並於1912年成為教授,而在1942年退休。他卒於巴黎。數學家亨利·嘉當是他的兒子。曾指導過華人數學家陳省身。 據嘉當自己在“科研簡介”(Notice sur les travaux scientifiques)所作的描述,他的工作(總數達186,發表於1893-1947年間)的主題是李群的理論。他從在復的簡單李代數上的基礎材料上的工作開始,把恩格爾(Christian Engel)和基令(Wilhelm Killing)先前的工作整理起來。這被證明是有決定性意義的,至少對於分類來講,他鑑定出4個主要的族和5個特殊情況。他也引入了代數群的概念,它在1950年之前並沒有被認真地發展過。他也定義了反對稱微分形式的一般概念,以我們現在所使用的風格;他通過馬尤厄-嘉當方程處理李群的方式要用到2-形式來表達。那時,稱為Pfaffian系統(也就是用1-形式表達的1階微分方程組)的概念很常用;通過引入表示導數的新變數,和額外的微分形式,他們可以表述很一般的偏微分方程(PDE)系統。嘉當加入了外導數,作為一個完全幾何式的坐標無關的操作。這很自然導致了對於一般的p討論p-形式的需要。嘉當描述了Riquier的一般PDE理論對他的影響。 基於這些基礎 – 李群和微分形式 – 他繼續深入完成了大量工作,以及一些通用的技術,例如移動標架法,這些逐漸融入到數學的主流中。

相關詞條

熱門詞條

聯絡我們