設計原則
反應堆壓力容器位於反應堆廠房中心,設計時主要考慮一迴路冷卻劑的高壓和高溫,主管道斷裂事故和地震等作用。由於壓力容器所容納的反應堆本體放射性極強,故在材質要求、製作、檢驗及在役檢查等方面都比常規壓力容器要嚴格得多。
基本分類
分為鋼和預應力混凝土兩類。鋼壓力容器可用於各種類型的核反應堆。預應力混凝土壓力容器已成功地用於氣冷堆,並正在探索用於其他類型的核反應堆。
鋼壓力容器
是50年代初隨著第一批動力反應堆問世而出現的,輕水堆核電站的鋼壓力容器均為圓筒形結構。百萬千瓦級的大功率壓水堆壓力容器的內徑多在4.4米左右,總高一般在14米左右,壁厚約20厘米,承受15兆帕以上的高壓(圖1), 通常用含錳、鉬、鎳的低合金鋼製成。為了抗腐蝕,內壁需堆焊一層不鏽鋼。上封頭用法蘭連線,便於反應堆換料,其頂部設有反應堆控制棒驅動機構。容器上還有反應堆一迴路的進出口接管段。沸水堆壓力容器的外形和材質與壓水堆類似,但壓力較低,約在7兆帕左右。因為沸水反應堆需要安裝設定汽水分離器等主要設備,所以其設計尺寸應大於冷水反應堆,如其在百萬千瓦級壓力容器設計中,設計直徑需要達到6.4m,設計高度需要超過22m,壁厚設計要求在15-17cm 。沸水堆的控制棒則貫通壓力容器的底部。
氣冷堆的鋼壓力容器是直徑約20米的圓球,頂部設有加料立管、邊上有進出口風道。由於容積大、焊接工藝及運輸困難,已很少採用。
預應力混凝土壓力容器
50年代末,法國首先套用於氣冷反應堆中。但在總體布置上還未脫離鋼容器的格局,即壓力容器內只容納反應堆活性區,而冷卻劑的壓力迴路和蒸氣發生器等仍置於壓力容器之外,還需另設生物禁止,故不經濟。60年代末,英國在奧爾德伯里核電站的壓力容器設計中提出了一體化設計的概念,即把壓力迴路和蒸氣發生器移至活性區附近,全部置於預應力混凝土壓力容器之內,既提高了反應堆的安全性,又充分利用了預應力混凝土容器容積大的特點,因而技術經濟效果較高。從此世界各國建造的氣冷堆預應力混凝土壓力容器也都採用了一體化設計。
預應力混凝土壓力容器的幾何形狀,除早期的幾個氣冷堆外,一般都採用厚5~6米的平板封頭和壁厚4~5米的立式圓筒,直徑約25米、高約30米(圖2)。按設備處在同一室腔或幾個室腔的設定方式,分成單腔及多腔式兩種。按預應力鋼束配置方式又可分為三種:①縱向鋼束沿容器筒壁豎向布置並錨固於筒體的上下端,環向鋼束則分段張拉並錨固於容器四周的扶壁上;②沿筒壁配置正反兩方向互相交叉的兩組螺鏇形預應力鋼束,並錨固在圓筒體的上下兩端;③縱向用粗鋼束,環向用鋼絲或鋼絞線連續纏繞,適用於多腔式容器。
在預應力混凝土壓力容器的內側,需設定鋼襯裡、絕熱層和循環冷卻水系統,以保證容器的密閉性,防止混凝土過度受熱及混凝土厚壁內外表面間的溫差過大。結構受力按三維塊單元格線計算。
核電站的預應力壓力容器的混凝土用量多達1~2.5×10 米 ,預應力鋼束一般為1~2×10 噸,總施工期大致為 4年左右。施工中須採取措施以防止大體積混凝土的收縮開裂。
在預應力混凝土壓力容器中由於採用近千根預應力鋼束作為主要承載構件,個別鋼束的偶爾破壞並不影響整個容器的受力狀態,故比鋼壓力容器具有更高的安全度。它可在工地現場製造和裝配,因此尺寸不受運輸條件限制,特別適用於大型核電站。
其它
繼法國成功地套用了預應力混凝土壓力容器於氣冷堆之後,用於其他堆型的研製工作也在各國開展。1967年起,瑞典、丹麥、挪威等國對沸水堆預應力混凝土壓力容器共同進行了參考設計、模型試驗及商用化問題的研究,並取得了不少有益的經驗。聯邦德國、奧地利等正在研究壓水堆預應力混凝土壓力容器。美國、英國正在構想把它套用於快中子堆。