基本介紹
(1)對一個n階行列式添加k行和k列(k為正整數),且每行(列)各含有n個元素,而添加行列的交叉處補零所得到的(n+k)階行列式,叫做 加邊行列式。例如,行列式
![加邊行列式](/img/4/6f8/wZwpmL0UTM5cDM3kjNzYTN1UTM1QDN5MjM5ADMwAjMwUzL5YzLyczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
和
![加邊行列式](/img/7/841/wZwpmLxUDMyEDNyAzNzYTN1UTM1QDN5MjM5ADMwAjMwUzLwczL1MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
都是二階行列式
![加邊行列式](/img/d/b99/wZwpmL2YTM5MjN4QjM2EzM1UTM1QDN5MjM5ADMwAjMwUzL0IzL3gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
的加邊行列式 。
(2)行列式降一階,其項數急劇減少,我們總是喜歡用降階法處理問題,但是有時用升階法反而方便。對於n階行列式D增加一行,一列,就變成n+1階行列式△,由於增加的一行一列常常在邊上,稱△為n的 加邊行列式。構造出來的這個加邊行列式與原來的行列式值相等,而且這個加邊行列式容易計算 。
例題解析
![加邊行列式](/img/e/8c3/wZwpmLzcTM3IjMzYzNzYTN1UTM1QDN5MjM5ADMwAjMwUzL2czLzUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![加邊行列式](/img/0/8a2/wZwpmL0YDM4UzM5IDOxUTN1UTM1QDN5MjM5ADMwAjMwUzLygzL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![加邊行列式](/img/c/ad7/wZwpmL1cDNxETNzITOzYTN1UTM1QDN5MjM5ADMwAjMwUzLykzLxgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![加邊行列式](/img/4/7ca/wZwpmL3IjNzUjM5MTM0YTN1UTM1QDN5MjM5ADMwAjMwUzLzEzLyMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![加邊行列式](/img/0/c5b/wZwpmL3EDOzkDMzITOzYTN1UTM1QDN5MjM5ADMwAjMwUzLykzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![加邊行列式](/img/8/ef7/wZwpmL0QTNyEDN0MDOzYTN1UTM1QDN5MjM5ADMwAjMwUzLzgzL0YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![加邊行列式](/img/1/38a/wZwpmLxUTNwIzM5ETM0YTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLzQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![加邊行列式](/img/5/7c0/wZwpmLwUTN2MzN3ITOzYTN1UTM1QDN5MjM5ADMwAjMwUzLykzLwIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![加邊行列式](/img/3/ded/wZwpmLzMTMxQTM5AzNzYTN1UTM1QDN5MjM5ADMwAjMwUzLwczL2czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![加邊行列式](/img/9/d47/wZwpmL1EDN5UDMygDM0YTN1UTM1QDN5MjM5ADMwAjMwUzL4AzL2UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![加邊行列式](/img/4/ec8/wZwpmLyMjMyATN3MTM0YTN1UTM1QDN5MjM5ADMwAjMwUzLzEzL0AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
【例1】計算行列式: 解:D加邊成以下的n+1階行列式第一行乘以-1後分別加到其餘各行,再從第2,3,…,n+1列分別提取x-a,然後各列都加到第一列上,得當x=a時,Dn=0,以上結論也是對的。【例2】計算行列式: 解:將行列式升階 這是一個箭形行列式,當x不等於0時有 當x=0時,上述結果顯然也成立 。