簡介
量子化學,相對論量子化學
1995-1997年,德國馬普研究所客座科學家。1998-2001年,德國魯爾-波鴻大學工作。
主講課程:基礎量子化學,高等量子化學
研究領域和興趣
⒈相對論含時密度泛函理論及GW方法
⒉多組態自洽場相對論直接微擾理論
⒊線性標度相對論密度泛函方法
⒋“相對論性”化學與催化反應機理研究
⒌ 相對論能帶理論
⒍ 相對論從頭算朗之萬基態與激發態分子動力學模擬
⒎ 電、磁性質的相對論密度泛函理論方法
⒏ 多參考態電子相關方法
主要論著
Relativistic Hamiltonians:
1. W. Liu*, Perspectives of relativistic quantum chemistry: the negative energy cat smiles, Phys. Chem. Chem. Phys. 14 (2012) 35-48 (Ranked No. 9 of ``Top 10 Most-read PCCP Articles in November, 2012).
2. W. Kutzelnigg* and W. Liu*, Quasirelativistic theory equivalent to fully relativistic theory, J. Chem. Phys. 123(24) (2005) 241102-1-4 (Rapid Communication).
3. W. Liu* and D. Peng, Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory, J. Chem. Phys. 125(4) (2006) 044102-1-10; (E) 125(14) (2006) 149901-1.
4. D. Peng, W. Liu*, Y. Xiao, and L. Cheng, Making four- and two-component relativistic density functional methods fully equivalent based on the idea of “from atoms to molecule”, J. Chem. Phys. 127(10) (2007) 104106-1-15.
Relativistic wave functions
5. Z. Li, S. Shao, and W. Liu*, Relativistic explicit correlation: Coalescence conditions and practical suggestions, J. Chem. Phys. 136(14) (2012) 144117-1-23.
Relativistic properties
6. Y. Xiao, D. Peng, and W. Liu*, Four-component relativistic theory for nuclear magnetic shielding constants: The orbital decomposition approach, J. Chem. Phys. 126(8) (2007) 081101-1-4 (rapid communication).
7. Y. Xiao, W. Liu*, L. Cheng, and D. Peng, Four-component relativistic theory for nuclear magnetic shielding constants: Critical assessments of different approaches, J. Chem. Phys . 126(21) (2007) 214101-1-11.
8. Q. Sun, W. Liu*, Y. Xiao, and L. Cheng, Exact two-component relativistic theory for nuclear magnetic resonance parameters, J. Chem. Phys. 131(8) (2009) 081101-1-4 (Rapid Communication).
Time-dependent density functional theory
9. J. Gao, W. Liu*, B. Song, and C. Liu, Time-dependent four-component relativistic density functional theory for excitation energies, J. Chem. Phys. 121(14) (2004) 6658-6666.
10. Z. Li and W. Liu*, Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory, J. Chem. Phys . 133(6) (2010) 064106-1-22.
其它SCI論文
Relativistic Hamiltonians:
11. W. Liu*, Effective quantum electrodynamics Hamiltonians: A tutorial review, Int. J. Quantum Chem. 2014, DOI: 10.1002/qua.24852.
12. W. Liu*, Advances in relativistic molecular quantum mechanics, Phys. Rep. 537 (2014) 59-89.
13. W. Liu*, Perspective: Relativistic Hamiltonians, Int. J. Quantum Chem. 114 (2014) 983-986.
14. Z. Li, Y. Xiao, and W. Liu*, On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular Properties, J. Chem. Phys. 141(5) (2014) 054111-1-21.
15. W. Liu* and I. Lindgren, Going beyond `no-pair relativistic quantum chemistry', J. Chem. Phys. 139(1) (2013) 014108-1-21.
16. Z. Li, Y. Xiao, and W. Liu*, On the spin separation of algebraic two-component relativistic Hamiltonians, J. Chem. Phys. 137(15) (2012) 154114-1-18.
17. W. Liu*, The `big picture' of relativistic molecular quantum mechanics, in Theory and Applications in Computational Chemistry: The First Decade of the Second Millennium, AIP Conf. Proc. 1456 (2012) 62-66.
18. W. Liu, Editorial on the special issue of Chemical Physics on recent advances and applications of relativistic quantum chemistry, Chem. Phys. 395 (2012) 1 [Guest editor for the special issue in memory of the 9th International Conference on Relativistic Effects in Heavy-Element Chemistry and Physics (REHE-2010), held in Beijing between September 25 and 29, 2010 and chaired by W. Liu].
19. Q. Sun, W. Liu*, and W. Kutzelnigg*, Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations, Theor. Chem. Acc. 129 (2011) 423-436 (special issue).
20. W. Liu*, Ideas of relativistic quantum chemistry, Mol. Phys. 108(13) (2010) 1679-1706 (invited review; specially highlighted and propagandized by the chief editor).
21. W. Liu* and D. Peng, Exact two-component Hamiltonians revisited, J. Chem. Phys. 131(3) (2009) 031104 -1-4 (Rapid Communication). (Ranked No. 11 on the list of "Top 20 Most Downloaded Articles of J. Chem. Phys." in July, 2009).
22. W. Kutzelnigg* and W. Liu*, Matrix formulation of direct perturbation theory of relativistic effects in a kinetically balanced basis, Chem. Phys. 349(1-3) (2008) 133-146 (special issue).
23. W. Liu* and W. Kutzelnigg*, Quasirelativistic theory. II. Theory at matrix level, J. Chem. Phys. 126(11) (2007) 114107-1-14.
24. W. Kutzelnigg* and W. Liu*, Quasirelativistic theory. I. Theory in terms of a quasirelativistic operator, Mol. Phys. 104(13-14) (2006) 2225-2240 (special issue).
25. 劉文劍*,相對論量子化學新進展(New advances in relativistic quantum chemistry),化學進展 19(6) (2007) 833-851 (特邀綜述)。
26. W. Kutzelnigg* and W. Liu*, Response to “Comment on ‘quasirelativistic theory equivalent to fully relativistic theory’ [J. Chem. Phys. 123, 24, (2005), 241102-1-4]”, J. Chem. Phys. 125(10) (2006) 107102-1-2.
27. 王繁,黎樂民*,劉文劍,對含重元素體系的接合二分量-標量相對論密度泛函計算方法,高等學校化學學報 25(2) (2004) 299-303.
Wave function theory and analysis
28. W. Liu* and M. R. Hoffmann*, SDS: the `static-dynamic-static' framework for strongly correlated electrons, Theor. Chem. Acc. 133 (2014) 1481-1-12.
29. Z. Li, H. Li, B. Suo, and W. Liu*, Localization of molecular orbitals: From fragments to molecule, Acc. Chem. Res. 47 (2014) 2758-2767.
30. P. K. Tamukong, M. R. Hoffmann*, Z. Li, and W. Liu*, Relativistic GVVPT2 Multireference Perturbation Theory Description of the Electronic States of Yand Tc, J. Phys. Chem. A 118 (2014) 1489-1501.
31. S. Mao, L. Cheng, W. Liu, and D. Mukherjee*, A spin-adapted size-extensive state- specific multi-reference perturbation theory (II): Molecular applications, J. Chem. Phys. 136(2) (2012) 024106-1-15.
32. S. Mao, L. Cheng, W. Liu, and D. Mukherjee*, A spin-adapted size-extensive state- specific multi-reference perturbation theory (I): Formal developments, J. Chem. Phys. 136(2) (2012) 024105-1-14.
33. F. Chen*, M. Wei, and W. Liu, On the performance of the open-shell perturbation theory, Sci. China Chem. 54(3) (2011) 446-453.
34. D. Peng, J. Ma, and W. Liu*, On the construction of Kramers paired double group symmetry functions, Int. J. Quantum Chem. 109(10) (2009) 2149-2167 (special issue).
35. S. Wang, W. Liu, and W. H. E. Schwarz*, On relativity, bonding and valence electron distribution, J. Phys. Chem. A 106(5) (2002) 795-803.
36. W. Liu*, W. Kutzelnigg, and Ch. van Wüllen, Relativistic MCSCF by means of quasi-degenerate direct perturbation theory. II. Preliminary application, J. Chem. Phys. 112(8) (2000) 3559-3571.
37. W. Kutzelnigg* and W. Liu, Relativistic MCSCF by means of quasidegenerate direct perturbation theory. I. Theory, J. Chem. Phys. 112(8) (2000) 3540-3558.
38. W. Liu and L. Li*, A method for population and bonding analyses in calculations with extended basis sets, Theor. Chim. Acta 95(3-4) (1997) 81-95.
Relativistic properties
39. Y. Xiao, Y. Zhang, and W. Liu*, New experimental NMR shielding scales mapped relativistically from NSR: Theory and application, J. Chem. Theor. Comput. 10 (2014) 600-608.
40. Y. Xiao, Y. Zhang, and W. Liu*, Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals, J. Chem. Phys. 141(16) (2014) 164110-1-16.
41. Y. Xiao and W. Liu*, Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor: Linear molecules, J. Chem. Phys. 139(4) (2013) 034113-1-11.
42. Y. Xiao and W. Liu*, Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor, J. Chem. Phys. 138(13) (2013) 134104-1-13.
43. Q. Sun, Y. Xiao, and W. Liu*, Exact two-component relativistic theory for NMR parameters: General formulation and pilot application, J. Chem. Phys. 137(17) (2012) 174105-1-20【本工作可演化出540種方法】.
44. Y. Xiao, Q. Sun, and W. Liu*, Fully relativistic theories and methods for NMR properties, Theor. Chem. Acc. 131 (2012) 1080-1-17 (invited review for the 50th anniversary issue).
45. L. Cheng, Y. Xiao, and W. Liu*, Four-component relativistic theory for nuclear magnetic shielding: Magnetically balanced gauge-including atomic orbitals, J. Chem. Phys. 131(24) (2009) 244113-1-12.
46. L. Cheng, Y. Xiao, and W. Liu*, Four-component relativistic theory for NMR parameters: Unified formulation and numerical assessment of different approaches, J. Chem. Phys. 130(14) (2009) 144102-1-18; (E) 131(1) (2009) 019902-1.
47. W. Kutzelnigg* and W. Liu*, Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation, J. Chem. Phys. 131(4) (2009) 044129-1-16.
Time-dependent density functional theory
48. Z. Li, B. Suo, and W. Liu*, First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the TD-DFT and pp-TDA levels, J. Chem. Phys. 141(24) (2014) 244105-1-16.
49. Z. Li and W. Liu*, First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels, J. Chem. Phys. 141(1) (2014) 014110-1-10.
50. J. Liu, Y. Zhang, and W. Liu*, Photoexcitation of light-harvesting C-P-C60 triads: A FLMO-TD-DFT Study, J. Chem. Theory Comput. 10 (2014) 2436-2448.
51. D. Fan, Y. Yi, Z. Li, W. Liu, Q. Peng, and Z. Shuai, Solvent effects on the optical spectra and excited-state decay of triphenylamine-thiadiazole with hybridized local excitation and intramolecular charge transfer, J. Phys. Chem. A dx.doi.org/10.1021/jp5099409.
52. Z. Shuai*, W. Liu, W. Liang, Q. Shi, and H. Chen, Theoretical study of the low-lying electronic excited states for molecular aggregates, Sci. China Chem. 56(9) (2013) 1258-1262.
53. W. Liu* and J. Ma, Theoretical study of low-lying excited states of molecular aggregates. I. Development of linear-scaling TD-DFT, Sci. China Chem. 56(9) (2013) 1263-1266.
54. Z. Li, B. Suo, Y. Zhang, Y. Xiao, and W. Liu*, Combining spin-adapted open-shell TD-DFT with spin-orbit coupling, Mol. Phys. 111(24) (2013) 3741-3755.
55. Z. Li and W. Liu*, Theoretical and numerical assessments of spin-flip time-dependent density functional theory, J. Chem. Phys. 136(2) (2012) 024107-1-14.
56. Z. Li and W. Liu*, Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation, J. Chem. Phys. 135(19) (2011) 194106-1-14; (E) 138(2) (2013) 029904.
57. Z. Li, W. Liu*, Y. Zhang, and B. Suo, Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application, J. Chem. Phys. 134(13) (2011) 134101-1-22.
58. F. Wu, W. Liu*, Y. Zhang, and Z. Li, Linear scaling time-dependent density functional theory based on the idea of "from fragments to molecule'', J. Chem. Theor. Comput. 7 (2011) 3643-3660.
59. J. Gao, W. Zou, W. Liu*, Y. Xiao, D. Peng, B. Song, and C. Liu, Time-dependent four-component relativistic density-functional theory for excitation energies. II. The exchange-correlation kernel, J. Chem. Phys. 123(5) (2005) 054102-1-13.
60. D. Peng, W. Zou, and W. Liu*, Time-dependent quasirelativistic density functional theory based on the zeroth-order regular approximation, J. Chem. Phys. 123(14) (2005) 144101-1-13.
The BDF program package
61. W. Liu*, F. Wang, and L. Li, The Beijing density functional (BDF) program package: Methodologies and applications, J. Theor. Comput. Chem. 2(2) (2003) 257-272 (invited review).
62. W. Liu*, G. Hong, D. Dai, L. Li, and M. Dolg, The Beijing 4-component density functional program package (BDF) and its application to EuO, EuS, YbO, and YbS, Theor. Chem. Acc. 96(2) (1997) 75-83.
Electronic structure of d/f-compounds
63. Y. Zhang, W. Xu, Q. Sun, W. Zou, and W. Liu*, Excited states of OsO: A comprehensive time-dependent relativistic density functional theory study, J. Comput. Chem. 31(3) (2010) 532-551.
64. W. Xu, J. Ma, D. Peng, W. Zou, W. Liu*, and V. Staemmler, Excited states of ReO: A comprehensive time-dependent relativistic density functional theory study, Chem. Phys. 356(1-3) (2009) 219-228 (special issue).
65. W. Xu, Y. Zhang, and W. Liu*, Time-dependent relativistic density functional study of Yb and YbO, Sci. China Chem. 52(11) (2009) 1945-1953; 許文華,張勇,劉文劍*,Yb、YbO電子激發態的相對論含時密度泛函理論研究,中國科學B 39(11) (2009) 1484-1493。(special issue)
66. W. Zou* and W. Liu*, Comprehensive ab initio calculation and simulation on the low-lying excited states of TlX (X = F, Cl, Br, I, and At), J. Comput. Chem. 30(4) (2009) 524-539.
67. W. Zou and W. Liu*, Theoretical study on the low-lying electronic states of NiH and NiAt, J. Comput. Chem. 28(14) (2007) 2286-2298.
68. W. Zou and W. Liu*, Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI, J. Chem. Phys. 124(15) (2006) 154312-1-16.
69. W. Zou and W. Liu*, Extensive theoretical studies on the low-lying electronic states of indium monochloride cation, InCl, J. Comput. Chem. 26(1) (2005) 106-113.
70. F. Wang and W. Liu*, Benchmark four-component relativistic density functional calculations on Cu2, Ag2, and Au2, Chem. Phys. 311(1-2) (2005) 63-69 (special issue).
71. F. Wang and W. Liu*, Comparison of different polarization schemes in open-shell relativistic density functional calculations, J. Chin. Chem. Soc. (Taipei) 50(3B) (2003) 597-606 (Special issue).
72. W. Liu*, Ch. van Wüllen, F. Wang, and L. Li, Spectroscopic constants of MH and M2 (M = Tl, E113, Bi, E115): Direct comparisons of four- and two-component approaches in the framework of relativistic density functional theory, J. Chem. Phys. 116(9) (2002) 3626-3634.
73. W. Liu* and R. Franke*, Comprehensive relativistic ab initio and density functional theory studies on PtH, PtF, PtCl, and Pt(NH)Cl, J. Comput. Chem. 23(5) (2002) 564-575.
74. X. Cao, W. Liu, and M. Dolg*, Molecular structure of diatomic lanthanide compounds, Sci. China Chem. 45(1) (2002) 91-96; 曹曉燕,劉文劍,M. Dolg*,雙原子鑭系化合物分子結構(Molecular structure of diatomic lanthanide compounds),中國科學B 31(6) (2001) 481-486。
75. W. Liu*, Ch. van Wüllen, Y.-K. Han, Y.-J. Choi, and Y.-S. Lee, Spectroscopic constants of Pb and eka-lead compounds: Comparison of different approaches, Adv. Quantum Chem. 39 (2001) 325-355.
76. M. Dolg*, W. Liu, and S. Kalvoda, Performance of relativistic density functional and ab initio pseudopotential approaches for systems with high spin multiplicities. Gadolinium diatomics GdX (X = H, N, O, F, P, S, Cl, Gd), Int. J. Quantum Chem. 76(3) (2000) 359-370.
77. B. Metz, M. Schweizer, H. Stoll*, M. Dolg, and W. Liu, A small-core multiconfiguration Dirac-Hartree-Fock-adjusted pseudopotential for Tl: application to TlX (X = F, Cl, Br, I), Theor. Chem. Acc. 104(1) (2000) 22-28.
78. W. Liu* and Ch. van Wüllen, Comment on “four-component relativistic density functional calculations of heavy diatomic molecules [J. Chem. Phys. 112, 8, (2000),3499-3506]”, J. Chem. Phys. 113 (6) (2000) 2506-2507.
79. W. Liu and Ch. van Wüllen*, Spectroscopic constants of eka-gold (element 111) diatomic compounds: The importance of spin-orbit coupling, J. Chem. Phys. 110(8) (1999) 3730-3735; (E) 113 (2) (2000) 891.
80. W. Liu, R. Franke*, and M. Dolg, Relativistic ab initio and density functional theory calculations on the mercury fluorides: Is HgFthermodynamically stable? Chem. Phys. Lett. 302(3-4) (1999) 231-239.
81. W. Liu* and M. Dolg, Benchmark calculations on lanthanide atoms: Calibration of ab initio and density functional methods, Phys. Rev. A 57(3) (1998) 1721-1728.
82. W. Liu, W. Küchle, and M. Dolg*, Ab initio pseudopotential and density functional all-electron study of ionization and excitation energies of actinide atoms, Phys. Rev. A 58(2) (1998) 1103-1110.
83. W. Liu*, M. Dolg, and L. Li, Fully relativistic density functional calculations of the ground and excited states of Yb, YbH, YbF, and YbO, J. Chem. Phys. 108(7) (1998) 2886-2895.
84. W. Liu, M. Dolg*, and P. Fulde, Calculated properties of lanthanocence anions and the unusual electronic structure of their neutral counterparts, Inorg. Chem. 37(5) (1998) 1067-1072.
85. M. Koga*, W. Liu, M. Dolg, and P. Fulde, Orbital localization and delocalization effects in the U 5f2 configuration: Impurity problem, Phys. Rev. B 57(17) (1998) 10648-10654.
86. W. Liu, M. Dolg*, and P. Fulde, Low-lying electronic states of lanthanocenes and actinocenes: M(CH)(M = Nd, Tb, Yb, U), J. Chem. Phys. 107(9) (1997) 3584-3591.
Miscellaneous computations
87. S. Yao, W. Xu, A. C. Johnston-Peck, F. Zhao, Z. Liu, S. Luo, S. D. Senanayake, A. Martínez-Arias, W. Liu* and J. A. Rodriguez*, Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO2 catalysts for the water-gas shift reaction, Phys. Chem. Chem. Phys. 16 (2014) 17183-17195.
88. S. Wang, J. Liu, L. Yuan, Z. Cui, J. Peng, J. Li, M. Zhai* and W. Liu*, Towards understanding the color change of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide during gamma irradiation: an experimental and theoretical study, Phys. Chem. Chem. Phys. 16 (2014) 18729-18735.
89. A. Liu, Q. Sun, J. Cui, J. Zheng, W. Liu*, and X. Wan*, Tuning Mesomorphic Properties and Handedness of Chiral Calamitic Liquid Crystals by Minimal Modification of the Effective Core, Chirality 23 (2011) E74-E83.
90. W. Zou, Y. Liu, W. Liu, T. Wang, and J. E. Boggs*, He@MoClF: A stable complex of Helium, J. Phys. Chem. A 114(1) (2010) 646-651.
91. X. Li*, F. He, K. Fu, and W. Liu, Solvation energy of nonequilibrium polarization: Old question, new answer, J. Theor. Comput. Chem. 9 (2010) 23-27.
92. J. Deng, N. Song*, W. Liu, Q. Zhou, and Z. Wang, Towards near-infrared chiroptically switching materials: Theoretical and experimental studies on Viologen-containing 1,1’-Binaphthyls, ChemPhysChem 9(9) (2008) 1265-1269 (Communications).
93. S. Lü, W. Liu*, and X. Li, Ab initio investigation on electron transfer in molecular electronic devices: A minimal model study, Chem. Phys. Lett. 439(1-3) (2007) 85-90.
94. C. Xiao, N. Yan, M. Zou, S. Hou, Y. Kou*, W. Liu*, and S. Zhang, NOcatalyzed deep oxidation of methanol: Experimental and theoretical studies, J. Mol. Catal. A: Chemical 252(1-2) (2006) 202-211.
95. S. Lü, X. Li*, and W. Liu*, Electronic coupling matrix elements of U-shaped donor-bridge-acceptor molecules and influence of mediated benzene solvent, Chem. Phys. Lett. 414(1-3) (2005) 71-75.
其它
96. 劉文劍*,《理論化學原理與套用》第二章:相對論量子化學基本原理及相對論含時密度泛函理論(Principles of relativistic quantum chemistry and time-dependent relativistic density functional theory)(帥志剛,邵久書等編著,科學出版社,北京,2008),68-109。
97. W. Liu*, F. Wang, and L. Li, Relativistic density functional theory: The BDF program package in Recent Advances in Relativistic Molecular Theory, Recent Advances in Computational Chemistry, Vol. 5, edited by K. Hirao and Y. Ishikawa (World Scientific, Singapore, 2004), 257-282.
98. W. Liu*, F. Wang, and L. Li, Recent advances in relativistic density functional methods in Encyclopedia of Computational Chemistry,edited by P. von Ragué Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, UK, 2004) (invited review).
參與編輯的期刊
1) Handbook of Relativistic Quantum Chemistry (three volumes), edited by Wenjian Liu (Springer-Verlag GmbH, to be printed in 2016).
2) Chemical Physics, Recent advances and applications of relativistic quantum chemistry, Vol. 395, 2012, edited by Wenjian Liu (Elsvier, special issue for REHE-2010).
3) Chemical Physics, Recent advances in electron correlation methods and applications, Vol. 401, 2012, edited by Wim Klopper, Wenjian Liu, and Sourav Pal (Elsvier, special issue in honor of Prof. Debashis Mukherjee's 65th birthday).
4) Journal of Theoretical and Computational Chemistry, Vol. 5, 2006, edited by Wenjian Liu and Lemin Li (World Scientific, Singapore, in honor of Prof. Guangxian Xu's 60 year teaching and researching).