簡介
數理邏輯中遞歸論的一部分。它的中心論題是用遞歸論為工具給出數集(問題集)或函式集的複雜性的某種排序。
詳解
因為所謂算術集恰是自然數集 N中由一階公式定義的自然數集,而解析集則是由二階公式定義的自然數集。算術集構成解析集類的一個更易於定義的子類。同時,由於所有的遞歸集都是算術集,如把它們看成有同樣複雜的可定義性並用作討論的起點,這將是自然的。
同樣的,一個遞歸可枚舉集A恰為{x|扽yRxy},其中R為一般遞歸謂詞,所以一切遞歸可枚舉集也是算術的,而由於一階公式對於邏輯運算塡和量詞彐(自然數變元)具有封閉性,所以任一算術集的補和射影依然是算術的,如此等等。在使用適當約定和稍作引伸之後,即可得到度量集合(數的或問題的)複雜性的一種排序稱之為算術分層。類似地可以建立解析分層,從而S.C.克林就利用遞歸論成功地建立了分層理論及其相應的推廣。
因為集合或函式均可用謂詞來表述,故以下的討論將就謂詞而言且將沿用遞歸函式中的符號和概念。
設α,b,с,…,x,y,z;αi,bi,сi,…,xi,yi,zi(i=1,2,…)為自然數集N上的變元(0型變元),α,β,…,α1,α2,…ξ,η,…為一元數論函式集NN上的變元(1型變元)。若具有0型和1型兩種變元的謂詞 P(α1,α2,…,αm,α1,α2,…,αn)(m,n≥0,m+n>0)由一般遞歸模式出發,經過有限次使用邏輯運算:→,∨,∧,塡 和量詞運算扽x,凬x,扽ξ,凬ξ,而得到,則稱謂詞P是解析謂詞。特別地,當P未用函式量詞扽ξ,凬ξ 時,則稱之為算術謂詞。
由於每一個一階公式都有等價的前束範式,故可只限於討論前束範式的情形並簡稱公式為謂詞,把序列(α1,α2,…,αm,α1,α2,…,αn)記成α,並將一前束範式的前束詞中,相同的一串量詞收縮為一個如
![分層理論](/img/9/4ce/nBnauM3X5cTO3UTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分層理論](/img/5/bc3/ml2ZuM3X5AzMxYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/2/08f/ml2ZuM3XwUTNyYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLwUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/5/bc3/ml2ZuM3X5AzMxYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/a/3a0/ml2ZuM3X0gDN0YTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL0gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分層理論](/img/5/fc6/ml2ZuM3X2YTN1YTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL2YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
把可以用兩種形式
![分層理論](/img/5/bc3/ml2ZuM3X5AzMxYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/2/08f/ml2ZuM3XwUTNyYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLwUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/c/84c/ml2ZuM3X5YDO2YTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
例如,易見
![分層理論](/img/9/159/ml2ZuM3X3UzN3YTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
又如,
![分層理論](/img/e/edf/ml2ZuM3X2czN4YTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL2czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/c/84c/ml2ZuM3X5YDO2YTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
在k≥1的情形,恆存在一個枚舉類
![分層理論](/img/5/bc3/ml2ZuM3X5AzMxYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/2/08f/ml2ZuM3XwUTNyYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLwUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/5/fc6/ml2ZuM3X2YTN1YTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL2YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
分層定理
對每一k≥0,都存在一個![分層理論](/img/9/222/ml2ZuM3XxczMxcTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/0/90d/ml2ZuM3X1AzMycTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分層理論](/img/0/90d/ml2ZuM3X1AzMycTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分層理論](/img/9/222/ml2ZuM3XxczMxcTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/0/90d/ml2ZuM3X1AzMycTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分層理論](/img/9/222/ml2ZuM3XxczMxcTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/9/222/ml2ZuM3XxczMxcTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/0/90d/ml2ZuM3X1AzMycTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分層理論](/img/5/bc3/ml2ZuM3X5AzMxYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/2/08f/ml2ZuM3XwUTNyYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLwUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/9/222/ml2ZuM3XxczMxcTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/0/90d/ml2ZuM3X1AzMycTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分層理論](/img/5/bc3/ml2ZuM3X5AzMxYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/2/08f/ml2ZuM3XwUTNyYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLwUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/5/acb/ml2ZuM3XzIzM0cTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLzIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/5/acb/ml2ZuM3XzIzM0cTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLzIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/9/222/ml2ZuM3XxczMxcTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/0/90d/ml2ZuM3X1AzMycTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
所以,這就得到了一個方便的分層(1)來給算術謂詞(算術集)分類。這個分層稱為算術分層。
完備形式定理
對於每一個k≥1,都存在一個關於![分層理論](/img/5/bc3/ml2ZuM3X5AzMxYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/2/08f/ml2ZuM3XwUTNyYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLwUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/5/bc3/ml2ZuM3X5AzMxYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/2/08f/ml2ZuM3XwUTNyYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLwUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/5/bc3/ml2ZuM3X5AzMxYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/2/08f/ml2ZuM3XwUTNyYTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLwUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
當P已經用到1型變元的量詞(函式量詞)則將增加定義的複雜性,從而引進解析分層。
關於 1型變元亦有:前束詞中一串同類量詞可收縮成一個;對任一算術謂詞R,存在一個原始遞歸謂詞S使有扽yS(y,α)可表為扽α扽xS(α(x),α)即為 扽αR(α,α)等事實可以利用。故可將全體解析謂詞依以下形式分類:
(2)
![分層理論](/img/9/f04/ml2ZuM3XxkjM5cTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxkzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![分層理論](/img/9/f04/ml2ZuM3XxkjM5cTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxkzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![分層理論](/img/5/00f/ml2ZuM3X4QzMwgTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL4QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![分層理論](/img/d/788/ml2ZuM3X1kzMxgTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1kzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/7/bd4/ml2ZuM3X1AzMygTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/0/79c/ml2ZuM3X5gzMzgTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分層理論](/img/6/30e/ml2ZuM3X3IzN0gTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![分層理論](/img/7/bd4/ml2ZuM3X1AzMygTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分層理論](/img/9/f04/ml2ZuM3XxkjM5cTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxkzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![分層理論](/img/9/f04/ml2ZuM3XxkjM5cTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxkzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設C為一元函式集(嶅NN),這時我們可以把所考慮的謂詞 P(α1,α2,…,αm,α1,α2,…,αn)推廣為算術於和解析於C 中任意有限多個函式的謂詞。這時所得到的相應的分層,分別稱為C-算術分層和C-解析分層,並且分別記作
![分層理論](/img/5/a75/ml2ZuM3XwUDM2gTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLwUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![分層理論](/img/0/e8d/ml2ZuM3X1UDM3gTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
關於集合NN算術分層和 NN解析分層分別相應於無理數空間中的有限波萊爾集合射影集。J.W.艾迪生稱之為古典描述集合論。與之相應的,關於集合的(即C=═時)算術分層和解析分層的理論便稱之為能行描述集合論。
如果只考慮自然數謂詞(即在P中,m=0的情形),則可定義
![分層理論](/img/3/6f0/ml2ZuM3X4MjM4gTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分層理論](/img/9/222/ml2ZuM3XxczMxcTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分層理論](/img/9/222/ml2ZuM3XxczMxcTMyMTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLxczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
克林套用具有任意 k型變元(k=0,1,2,…)的一般遞歸函式的理論,對具有任意型變元的謂詞建立了分層理論,使得原來的分層理論得到了進一步的推廣。
如果把上述的α,b,с,…,看成是集合變元(即α,b,с,…是表示集合的變元)即可得到萊維的分層。