定義
![冪指函式](/img/7/9a6/wZwpmL3cDOzQDNyETOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxkzLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
冪指函式指數和底數都是變數的函式,形如 是數集)的函式稱為冪指函式,其中 u,v 是 E 上的函式。
![冪指函式](/img/9/561/wZwpmL3QTOykjM4QDOxMzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLzMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/a/433/wZwpmLwIDO2UTN2MzMxMzM1UTM1QDN5MjM5ADMwAjMwUzLzMzLxEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/4/6a4/wZwpmL1QDMyIDMyUjMxMzM1UTM1QDN5MjM5ADMwAjMwUzL1IzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
當不給出 u(x)與 v(x) 當具體形式是,總要求 。因此,冪指函式可改寫成由 與 複合而成的函式 f(g(x)),從而當 u,v 連續時它連續,u,v 可微時它也可微。
冪指函式既像冪函式,又像指數函式,二者的特點兼而有之。作為冪函式,其冪指數確定不變,而冪底數為自變數;相反地,指數函式卻是底數確定不變,而指數為自變數。冪指函式就是冪底數和冪指數同時都為自變數的函式。這種函式的推廣,就是廣義冪指函式。
具體例子
最簡單的冪指函式就是y=x 。說簡單,其實並不簡單,因為當你真正深入研究這種函式時,就會發現,在x<0時,函式圖象存在“黑洞”——無數個間斷點,如右圖所示(用虛線表示)。
![圖1.最簡單的冪指函式](/img/a/232/wZwpmL2ITOxADMwYjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
在x>0時,函式曲線是連續的,並且在x=1/e處取得最小值,約為0.6922,在區間(0,1/e]上單調遞減,而在區間[1/e,+∞)上單調遞增,並過(1,1)點。
此外,從函式y=x 的圖象可以清楚看出,0的0次方是不存在的。這就是在初等代數中明文規定“任意非零實數的零次冪都等於1,零的任意非零非負次冪都等於零”的真正原因。
函式極限
![冪指函式](/img/2/3b0/wZwpmL4gTO0IDOwgzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4czLwYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
本段中所有 的記號,表示的是各種可能的趨向,即 *可以是a、a-0、a+0 、∞ 、-∞ 或+∞ 。
一般方法
![冪指函式](/img/0/faa/wZwpmLyczM1gDO2YzNxMzM1UTM1QDN5MjM5ADMwAjMwUzL2czLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![冪指函式](/img/5/b5a/wZwpmL1cDN5cDMykjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/f/b88/wZwpmL0YzN0kDN1YzNxMzM1UTM1QDN5MjM5ADMwAjMwUzL2czLwYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
利用恆等變形(即換底變形) 及複合函式 求極限法則 ,有
![冪指函式](/img/6/490/wZwpmL2gTOyYTM4ITOxMzM1UTM1QDN5MjM5ADMwAjMwUzLykzLzczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
待定型
![冪指函式](/img/5/5eb/wZwpmL1MzM0UDM4gjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL2IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/d/d92/wZwpmLxQTNxATO2kzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5czL3UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/6/12c/wZwpmL4AzNwMDNzkTNxMzM1UTM1QDN5MjM5ADMwAjMwUzL5UzL4czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/7/627/wZwpmL2AjNxgTO4MzNxADN0UTMyITNykTO0EDMwAjMwUzLzczL0MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/9/3e2/wZwpmLzUjMxUDM4gjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL0AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
是兩個函式乘積的極限,我們知道若且唯若 和 中有一個等於0,另一個為 時,極限 才是待定型。
![冪指函式](/img/d/ecf/wZwpmL0UzNygDN5ETOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxkzLxMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/5/2f4/wZwpmLxgzM0kjM5cTO4kzM0UTMyITNykTO0EDMwAjMwUzL3kzLwgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/f/90e/wZwpmLyITOwQTNyITNwADN0UTMyITNykTO0EDMwAjMwUzLyUzL0IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![冪指函式](/img/4/c23/wZwpmL0ETNyETMxQzMxADN0UTMyITNykTO0EDMwAjMwUzL0MzL4czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
所以冪指函式極限 僅有三種待定型: 型、 型、 型。
肯定型
![冪指函式](/img/d/ecf/wZwpmL0UzNygDN5ETOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxkzLxMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
冪指函式的極限 除了上述三種待定型外沒有第四種待定型了。
![冪指函式](/img/6/a17/wZwpmLwITM3YTOwkzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5czLzEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/3/6c3/wZwpmL2czNwYTMyAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczL3UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![冪指函式](/img/9/61b/wZwpmLxYTO1kTN4UTOxMzM1UTM1QDN5MjM5ADMwAjMwUzL1kzL1AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/f/726/wZwpmLyMTOzAzNwYzNxMzM1UTM1QDN5MjM5ADMwAjMwUzL2czL4czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
若 、 ,因為規定l了 ,所以必有 ,則
![冪指函式](/img/3/4a9/wZwpmLzAzMwIzNzUTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL1EzLyYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/6/48e/wZwpmL4QzNzkzNyQDOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0gzL0UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![冪指函式](/img/0/bbd/wZwpmLxgjM4ETO0cTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL3kzL0czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/7/26f/wZwpmL2IjN0kzMzADOxMzM1UTM1QDN5MjM5ADMwAjMwUzLwgzL4QzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![冪指函式](/img/f/f2f/wZwpmLxYzMwETO4EzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLxczLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(1) ,(i) , ;(ii) , ;
![冪指函式](/img/9/44a/wZwpmLycjM2QDM4ADOxMzM1UTM1QDN5MjM5ADMwAjMwUzLwgzL0AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![冪指函式](/img/6/fde/wZwpmLzcTM5EDOzMTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzLwAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![冪指函式](/img/3/cb7/wZwpmL0IDNxkDN5gjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLwIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(2) , , ;
![冪指函式](/img/d/95e/wZwpmLyADNzUTM1ETMyMzM1UTM1QDN5MjM5ADMwAjMwUzLxEzLwMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/5/8fe/wZwpmLwIzN1gDO1ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLxAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/8/058/wZwpmL3YDNzMzM4MjM0IDN0UTMyITNykTO0EDMwAjMwUzLzIzL4UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/0/bbd/wZwpmLxgjM4ETO0cTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL3kzL0czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/5/8fe/wZwpmLwIzN1gDO1ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLxAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/f/b7f/wZwpmLwcDO4AjNyUTN1ATN0UTMyITNykTO0EDMwAjMwUzL1UzL1gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/f/f2f/wZwpmLxYzMwETO4EzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLxczLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(3) ,(i) 為 , ;(ii) 為為 , ;
![冪指函式](/img/7/462/wZwpmLxEzNzQzM0kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL1EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/5/8fe/wZwpmLwIzN1gDO1ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLxAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/8/058/wZwpmL3YDNzMzM4MjM0IDN0UTMyITNykTO0EDMwAjMwUzLzIzL4UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/f/f2f/wZwpmLxYzMwETO4EzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLxczLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![冪指函式](/img/5/8fe/wZwpmLwIzN1gDO1ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLxAzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/f/b7f/wZwpmLwcDO4AjNyUTN1ATN0UTMyITNykTO0EDMwAjMwUzL1UzL1gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/0/bbd/wZwpmLxgjM4ETO0cTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL3kzL0czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(4) ,(i) 為 , ;(ii) 為為 , ;
![冪指函式](/img/c/c8f/wZwpmL3gTMycjM4QTOwADN0UTMyITNykTO0EDMwAjMwUzL0kzL3MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![冪指函式](/img/7/627/wZwpmL2AjNxgTO4MzNxADN0UTMyITNykTO0EDMwAjMwUzLzczL0MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/9/6e5/wZwpmLzIjNwkzNyQDOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0gzL3AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![冪指函式](/img/8/058/wZwpmL3YDNzMzM4MjM0IDN0UTMyITNykTO0EDMwAjMwUzLzIzL4UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/f/f2f/wZwpmLxYzMwETO4EzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLxczLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![冪指函式](/img/7/26f/wZwpmL2IjN0kzMzADOxMzM1UTM1QDN5MjM5ADMwAjMwUzLwgzL4QzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![冪指函式](/img/f/b7f/wZwpmLwcDO4AjNyUTN1ATN0UTMyITNykTO0EDMwAjMwUzL1UzL1gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/6/172/wZwpmL4gDN5ETO0cTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL3kzLxIzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(5) 為+ ,(i) 或 , ;(ii) 或 , 。
典例分析
![冪指函式](/img/5/cef/wZwpmLyITM3QzN1QTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0kzL2IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
(1)求 ,
![冪指函式](/img/5/2f4/wZwpmLxgzM0kjM5cTO4kzM0UTMyITNykTO0EDMwAjMwUzL3kzLwgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/b/a64/wZwpmLygTN1ETOxcTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL3EzL1UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
解 這個極限式“ 型”待定型,先求 ,所以
![冪指函式](/img/4/230/wZwpmL4AjN1QTOzkjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLzczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![冪指函式](/img/5/1fa/wZwpmLycDNzMDOzQDOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLxQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(2)求 ,
![冪指函式](/img/4/c23/wZwpmL0ETNyETMxQzMxADN0UTMyITNykTO0EDMwAjMwUzL0MzL4czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/6/bdb/wZwpmLxMzMxkjMwMTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzLxIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
解這個極限式是“ 型”待定型,先求 ,其中
![冪指函式](/img/e/c2c/wZwpmLxMDNyQTNyITOxMzM1UTM1QDN5MjM5ADMwAjMwUzLykzL3czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![冪指函式](/img/6/6ed/wZwpmL2UDNzkjMwcDMxMzM1UTM1QDN5MjM5ADMwAjMwUzL3AzLwczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/4/ee5/wZwpmLzITN1cjN2gjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLwgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
利用等價無窮小關係公式 可作等價無窮小代換 ,即可得
![冪指函式](/img/2/7cd/wZwpmL4gzM2IzMzQDOxMzM1UTM1QDN5MjM5ADMwAjMwUzL0gzLxAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![冪指函式](/img/7/595/wZwpmL1YDO0MjN0ETOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxkzL0YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
所以 。
![冪指函式](/img/e/d06/wZwpmL0EzMxYDNyAjNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwYzL2MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(3)求
![冪指函式](/img/f/90e/wZwpmLyITOwQTNyITNwADN0UTMyITNykTO0EDMwAjMwUzLyUzL0IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![冪指函式](/img/d/a6e/wZwpmLwETN3IDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL1EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/7/14a/wZwpmL3QjN1gjM1MTOxMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL3YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
解 這個極限式是“ 型”待定型,先求 待定型 ,根據洛必達法則可得
![冪指函式](/img/a/a17/wZwpmL0MjMwYjNxADMyMzM1UTM1QDN5MjM5ADMwAjMwUzLwAzL0gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/e/c62/wZwpmLxITO1kTNyUjMxMzM1UTM1QDN5MjM5ADMwAjMwUzL1IzL4IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![冪指函式](/img/2/66f/wZwpmL1QTNzQTN1ITOwMzM1UTM1QDN5MjM5ADMwAjMwUzLykzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
所以 。
![冪指函式](/img/3/cfe/wZwpmLzMzMyAjM5EzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLxczLxMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
注 本題也可以等價無窮大替代,或經過放大縮小 後再用夾逼準則計算。
![冪指函式](/img/4/fc0/wZwpmLzMDOwcjN3QDOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0gzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(4)求 。
![冪指函式](/img/4/c23/wZwpmL0ETNyETMxQzMxADN0UTMyITNykTO0EDMwAjMwUzL0MzL4czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/0/24b/wZwpmL1AjN1AzN3kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/a/9b1/wZwpmLxQDM4EjNxMTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL3EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/c/d1d/wZwpmLzEDO3AzM5EjNxMzM1UTM1QDN5MjM5ADMwAjMwUzLxYzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/0/7f3/wZwpmL1UjNzgzN1ATOxADN0UTMyITNykTO0EDMwAjMwUzLwkzL3YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![冪指函式](/img/b/70a/wZwpmLwgjNxAjN0YTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL2EzL1MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
解這個極限式是“ 型”待定型,先計算 ,由於 ,可知 是 時的無窮小量,利用等價無窮小關係 ,可得
![冪指函式](/img/c/89f/wZwpmL1ITN2UjMzAjNxMzM1UTM1QDN5MjM5ADMwAjMwUzLwYzL0QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![冪指函式](/img/6/f05/wZwpmLwETMxUjMyUDOxMzM1UTM1QDN5MjM5ADMwAjMwUzL1gzLyAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/c/554/wZwpmL4AzMyEzM5YzMxMzM1UTM1QDN5MjM5ADMwAjMwUzL2MzL0czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/7/4db/wZwpmL1gjM4QTNwkzMxMzM1UTM1QDN5MjM5ADMwAjMwUzL5MzL2UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
所以 。
![冪指函式](/img/4/c23/wZwpmL0ETNyETMxQzMxADN0UTMyITNykTO0EDMwAjMwUzL0MzL4czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/9/53f/wZwpmLyQzN1YDM4ETOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxkzLzAzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
注 (1)這裡“ 型”待定型中不能先把“底的極限1”先算出來,錯成 。
(2)解這種問題時除了使用洛必達法則外,經常會用到等價無窮小替代及換元方法。
求導方法
![冪指函式](/img/f/9f1/wZwpmLxQTMyETMzITOwMzM1UTM1QDN5MjM5ADMwAjMwUzLykzL4EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
下面給出一般冪指函式的求導方法。為書寫方便,把f(x)和g(x)分別用f和g代替,即
指數求導法
![冪指函式](/img/a/e9e/wZwpmLzEDN4cDO1ETOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxkzLzczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
由於冪指函式定義中f(x)>0,因此可以利用對數的性質將函式改寫。 ,再對指數函式進行求導。
![冪指函式](/img/6/283/wZwpmL2YDM1ATN5EzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLxczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
對數求導法
這種方法是在兩邊取對數,再利用隱函式的求導法則求出y‘。
![冪指函式](/img/f/945/wZwpmLzUTN0QzM1QTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0kzL2IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![冪指函式](/img/a/c23/wZwpmL1IjNykzNwMjNwMzM1UTM1QDN5MjM5ADMwAjMwUzLzYzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![冪指函式](/img/a/7de/wZwpmL4MDM5MTN0gzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4czL2IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
多元複合函式求導法
![冪指函式](/img/7/3c0/wZwpmL3UDMzQjM0gjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL0MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
根據一元與多元函式複合的求導法則, 的導數為
![冪指函式](/img/d/8a0/wZwpmL1IDN1czM5ETOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxkzL2EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)