定義
共軛映射存在定理
![共軛映射](/img/7/168/nBnauM3XzYTN3gTN5MTM1IDO1UTM1QDN5MjM5ADMwAjMwUzLzEzL4UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
設V,W都是Ω上的有限維內積空間。若σ是V到W的一個線性映射,則恰有W到V的一個線性映射σ*與之對應,叫作σ的共軛映射,使對任意 ,有
![共軛映射](/img/7/0ae/nBnauM3X3QTNxEzNzITM1IDO1UTM1QDN5MjM5ADMwAjMwUzLyEzLzEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
證明
![共軛映射](/img/e/148/nBnauM3X1MzM1UTO2kTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL5EzL3AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![共軛映射](/img/3/6f6/nBnauM3XwcDO1UzN0UzM3UzM1UTM1QDN5MjM5ADMwAjMwUzL1MzLzEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
設 是V的一個標準正交基底,對任意 ,定義
![共軛映射](/img/1/aaa/nBnauM3X1EDM4kjN5MTM1IDO1UTM1QDN5MjM5ADMwAjMwUzLzEzLxgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛映射](/img/7/9bc/nBnauM3X4UDM2UzNwczNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3czL3QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![共軛映射](/img/4/061/nBnauM3X3QTNwcTO2AjM1IDO1UTM1QDN5MjM5ADMwAjMwUzLwIzL2QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
易驗證σ*是W到V的一個線性映射,對任意 ,又因 ,於是有
![共軛映射](/img/6/a0d/nBnauM3X2IDO0kjNxcjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL3IzL2czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![共軛映射](/img/e/6eb/nBnauM3XzEDNwUzM5YjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL2IzL3UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛映射](/img/9/a2a/nBnauM3X1MDO5MDMwQjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL0IzL2UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![共軛映射](/img/3/517/nBnauM3XzgTN4MTN0kjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL5IzLxgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![共軛映射](/img/1/ac3/nBnauM3X1cDN4YDO0ITM1IDO1UTM1QDN5MjM5ADMwAjMwUzLyEzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![共軛映射](/img/a/ae3/nBnauM3X1UDN3UTNxkTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL5EzLwYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![共軛映射](/img/8/c2c/nBnauM3XyIjNyMjMwIjM1IDO1UTM1QDN5MjM5ADMwAjMwUzLyIzL0czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![共軛映射](/img/0/064/nBnauM3X4ETOyMDMzYTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL2EzLygzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![共軛映射](/img/7/b72/nBnauM3X2ADM1ITMwYTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL2EzL1QzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![共軛映射](/img/1/ac3/nBnauM3X1cDN4YDO0ITM1IDO1UTM1QDN5MjM5ADMwAjMwUzLyEzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![共軛映射](/img/0/f78/nBnauM3X4QTOzgTOzMjM1IDO1UTM1QDN5MjM5ADMwAjMwUzLzIzL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![共軛映射](/img/f/27c/nBnauM3X1ITM1UzNwkTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL5EzL1MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛映射](/img/f/915/nBnauM3X1UDOxYTN1UjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL1IzL1AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛映射](/img/7/9bc/nBnauM3X4UDM2UzNwczNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3czL3QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![共軛映射](/img/c/64b/nBnauM3X4YzNzQjMwIjM1IDO1UTM1QDN5MjM5ADMwAjMwUzLyIzLyMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![共軛映射](/img/f/bb6/nBnauM3XyMTOwQTOxkTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL5EzL2AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![共軛映射](/img/7/9bc/nBnauM3X4UDM2UzNwczNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3czL3QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![共軛映射](/img/c/d30/nBnauM3XzYTOxMzNzkjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL5IzLzQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛映射](/img/f/27c/nBnauM3X1ITM1UzNwkTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL5EzL1MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設 ,若對任意 都有 ,則 。於是,若 對任意 都有 ,則 對稱地,設 ,若對任意 都有 ,則 ;若對任意 都有 ,則 則由此可說明σ*的唯一性
證明完畢。
![共軛映射](/img/2/13f/nBnauM3X2cDM0kDOzAjM1IDO1UTM1QDN5MjM5ADMwAjMwUzLwIzLwEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
顯然有 ,從而可以說σ與σ*互為共軛映射。
共軛轉置矩陣
![共軛映射](/img/e/148/nBnauM3X1MzM1UTO2kTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL5EzL3AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![共軛映射](/img/a/9a3/nBnauM3X3QzNwczM4YjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL2IzLwAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設 與 分為Ω上內積空間V與W的標準正交基底,則當
![共軛映射](/img/6/153/nBnauM3XxETM2AjM4MTM1IDO1UTM1QDN5MjM5ADMwAjMwUzLzEzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![共軛映射](/img/4/caf/nBnauM3X4YTOwgTNyQjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL0IzLwQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛映射](/img/7/a67/nBnauM3X1MjNxcjN5YjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL2IzL1IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
時有 其中A*為矩陣A的共軛轉置矩陣,即 。
證明
![共軛映射](/img/5/45b/nBnauM3X3UDO5cDO4ETOxMzM1UTM1QDN5MjM5ADMwAjMwUzLxkzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![共軛映射](/img/a/9a3/nBnauM3X3QzNwczM4YjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL2IzLwAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛映射](/img/e/148/nBnauM3X1MzM1UTO2kTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL5EzL3AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![共軛映射](/img/5/fa6/nBnauM3X1cjMzAjN0UzM3QTN1UTM1QDN5MjM5ADMwAjMwUzL1MzLzUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
記 而σ*在 與 下對應的 ,於是有
![共軛映射](/img/0/82f/nBnauM3X3YTM1cTNycTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL3EzL2YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛映射](/img/1/55b/nBnauM3XwQjN2UDMyETM1IDO1UTM1QDN5MjM5ADMwAjMwUzLxEzLzYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
從而有
![共軛映射](/img/0/f67/nBnauM3X0MDO5MTMzITM1IDO1UTM1QDN5MjM5ADMwAjMwUzLyEzL0YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![共軛映射](/img/7/fd9/nBnauM3X0YDM2kzMxYTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL2EzLzgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
於是有 ,證明完畢。
推論
![共軛映射](/img/3/fd8/nBnauM3XyATO0ETNwQjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL0IzL1UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![共軛映射](/img/1/7ae/nBnauM3XxQTNxITO5MjM1IDO1UTM1QDN5MjM5ADMwAjMwUzLzIzLwYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛映射](/img/3/499/nBnauM3XwADN4kTOzMjM1IDO1UTM1QDN5MjM5ADMwAjMwUzLzIzL3MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
1.設σ是Ω上有限維內積空間V的線性變換,如果 ,則說σ是規範的,如果 ,則說σ是自共軛的,而當Ω為實數域時說σ是對稱的,當Ω為複數域時說σ是Hermite的,如果σ可逆且 ,則當Ω為實數域時說σ是正交變換,而當Ω為複數域時說σ是U變換。
![共軛映射](/img/e/148/nBnauM3X1MzM1UTO2kTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL5EzL3AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
系設 是Ω上內積空間y的一個標準正交基底,σ是V的一個線性變換,
![共軛映射](/img/2/c32/nBnauM3X3ITOxcjN3cTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL3EzLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
,
則:
![共軛映射](/img/d/656/nBnauM3XxYDOyQDOyAjM1IDO1UTM1QDN5MjM5ADMwAjMwUzLwIzLzYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(1)σ為規範的充分必要條件是 ,此時稱矩陣A是規範的。
![共軛映射](/img/c/5e1/nBnauM3X1YDOygTOzETMzEzM1UTM1QDN5MjM5ADMwAjMwUzLxEzL1EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(2)σ為對稱(Hermite)的充分必要條件是 ,當Ω為複數域時稱A為Hermite的。
![共軛映射](/img/b/71c/nBnauM3X1UTNyAjN3ITM1IDO1UTM1QDN5MjM5ADMwAjMwUzLyEzLzYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(3)σ為正交(U)的充分必要條件是 。
2.設A為一規範矩陣,其第r行元素除對角線元素外都為零,則第r列元素也是這樣。
3.設σ為n維內積空間v的一個線性變換,則下列條件等價:
(1)σ是正交(U)變換;
(2)σ在V的任意標準正交基底下對應正交(U)矩陣;
(3)σ把V的每個標準正交基底都變成標準正交基底;
(4)σ不變向量的長度;
(5)σ不變向量的內積。
共軛映射的個數
![共軛映射](/img/0/298/nBnauM3X4IDMxYjM3MTM1IDO1UTM1QDN5MjM5ADMwAjMwUzLzEzL1AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
設F是一個域,Ω是F的一個代數閉包。K是擴張Ω/F的一個中間域。K到Ω內的一個,F-同態單射叫做K到Ω內的一個F-共軛映射,簡稱為F-共軛。設 是一個F-共軛。那么σ(K)也是Ω/F的一個中間域,並且σ(K)與K是F-共軛的。
![共軛映射](/img/c/189/nBnauM3XwUTM4QTNyUjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL1IzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
令A是K到Ω內的一切F-共軛所成的集。我們把A的基數(K的F-共軛的個數)記作 。
![共軛映射](/img/c/189/nBnauM3XwUTM4QTNyUjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL1IzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![共軛映射](/img/7/d95/nBnauM3XwYDN4QDO0ETM1IDO1UTM1QDN5MjM5ADMwAjMwUzLxEzL0czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![共軛映射](/img/a/b88/nBnauM3X1QDNygTOxETM1IDO1UTM1QDN5MjM5ADMwAjMwUzLxEzLxIzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![共軛映射](/img/f/179/nBnauM3X3EDMwYTM0MjM1IDO1UTM1QDN5MjM5ADMwAjMwUzLzIzL0UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![共軛映射](/img/a/0b9/nBnauM3XzQDN2kzNycjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL3IzL2czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![共軛映射](/img/5/59e/nBnauM3XzYTO4MTM0UTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL1EzLxgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
不依賴於代數閉包Ω的選取。事實上,設Ω和Ω’都是F的代數閉包並且都包含K。那么存在F-同構映射 。令A和A’分別是K到Ω內的F-共軛和K到Ω’內的F-共軛所成的集。對於任意 ,則 。反過來,對於任意 ,則 。因此,
![共軛映射](/img/c/4a4/nBnauM3X1MzM2YTO0ITM1IDO1UTM1QDN5MjM5ADMwAjMwUzLyEzL2QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![共軛映射](/img/9/7a7/nBnauM3XyADOykzN5UTM1IDO1UTM1QDN5MjM5ADMwAjMwUzL1EzL1czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![共軛映射](/img/c/189/nBnauM3XwUTM4QTNyUjM1IDO1UTM1QDN5MjM5ADMwAjMwUzL1IzLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
是A到A’的雙射,從而 。因此,對於代數擴張K/F來說,我們任意取定F的一個包含K的代數閉包Ω,而把K到Ω內的F-共軛的個數記作 。