RDSP6直流浪涌保護器

基本信息

最原始的電涌保護器羊角形間隙,出現於19世紀末期,用於架空輸電線路,防止雷擊損壞設備絕緣而造成停電,故稱“浪涌保護器”。20世紀20年代,出現了鋁浪涌保護器,氧化膜浪涌保護器和丸式浪涌保護器。30年代出現了管式浪涌保護器。50年代出現了碳化矽防雷器。70年代又出現了金屬氧化物浪涌保護器。現代高壓浪涌保護器,不僅用於限制電力系統中因雷電引起的過電壓,也用於限制因系統操作產生的過電壓。

基本特點

保護通流量大,殘壓極低,回響時間快;
·採用最新滅弧技術,徹底避免火災;
·採用溫控保護電路,內置熱保護;
·帶有電源狀態指示,指示浪涌保護器工作狀態;
·結構嚴謹,工作穩定可靠。

分極防護

第一級防雷器可以對於直接雷擊電流進行泄放,或者當電源傳輸線路遭受直接雷擊時傳導的巨大能量進行泄放,對於有可能發生直接雷擊的地方,必須進行CLASS—I的防雷。第二級防雷器是針對前級防雷器的殘餘電壓以及區內感應雷擊的防護設備,對於前級發生較大雷擊能量吸收時,仍有一部分對設備或第三級防雷器而言是相當巨大的能量會傳導過來,需要第二級防雷器進一步吸收。同時,經過第一級防雷器的傳輸線路也會感應雷擊電磁脈衝輻射LEMP,當線路足夠長感應雷的能量就變得足夠大,需要第二級防雷器進一步對雷擊能量實施泄放。第三級防雷器是對LEMP和通過第二級防雷器的殘餘雷擊能量進行保護。
第一級保護
目的是防止浪涌電壓直接從LPZ0區傳導進入LPZ1區,將數萬至數十萬伏的浪涌電壓限制到2500—3000V。
入戶電力變壓器低壓側安裝的電源防雷器作為第一級保護時應為三相電壓開關型電源防雷器,其雷電通流量不應低於60KA。該級電源防雷器應是連線在用戶供電系統入口進線各相和大地之間的大容量電源防雷器。一般要求該級電源防雷器具備每相100KA以上的最大衝擊容量,要求的限制電壓小於1500V,稱之為CLASSI級電源防雷器。這些電磁防雷器是專為承受雷電和感應雷擊的大電流以及吸引高能量浪涌而設計的,可將大量的浪涌電流分流到大地。它們僅提供限制電壓(衝擊電流流過電源防雷器時,線路上出現的最大電壓稱為限制電壓)為中等級別的保護,因為CLASSI級保護器主要是對大浪涌電流進行吸收,僅靠它們是不能完全保護供電系統內部的敏感用電設備的。
第一級電源防雷器可防範10/350μs、100KA的雷電波,達到IEC規定的最高防護標準。其技術參考為:雷電通流量大於或等於100KA(10/350μs);殘壓值不大於2.5KV;回響時間小於或等於100ns。
第二級防護
目的是進一步將通過第一級防雷器的殘餘浪涌電壓的值限制到1500—2000V,對LPZ1—LPZ2實施等電位連線。
分配電櫃線路輸出的電源防雷器作為第二級保護時應為限壓型電源防雷器,其雷電流容量不應低於20KA,應安裝在向重要或敏感用電設備供電的分路配電處。這些電源防雷器對於通過了用戶供電入口處浪涌放電器的剩餘浪涌能量進行更完善的吸收,對於瞬態過電壓具有極好的抑制作用。該處使用的電源防雷器要求的最大衝擊容量為每相45kA以上,要求的限制電壓應小於1200V,稱之為CLASSⅡ級電源防雷器。一般用戶供電系統做到第二級保護就可以達到用電設備運行的要求了
第二級電源防雷器採用C類保護器進行相—中、相—地以及中—地的全模式保護,主要技術參數為:雷電通流容量大於或等於40KA(8/20μs);殘壓峰值不大於1000V;回響時間不大於25ns。
第三級保護
目的是最終保護設備的手段,將殘餘浪涌電壓的值降低到1000V以內,使浪涌的能量不致損壞設備。
在電子信息設備交流電源進線端安裝的電源防雷器作為第三級保護時應為串聯式限壓型電源防雷器,其雷電通流容量不應低於10KA。
最後的防線可在用電設備內部電源部分採用一個內置式的電源防雷器,以達到完全消除微小的瞬態過電壓的目的。該處使用的電源防雷器要求的最大衝擊容量為每相20KA或更低一些,要求的限制電壓應小於1000V。對於一些特別重要或特別敏感的電子設備具備第三級保護是必要的,同時也可以保護用電設備免受系統內部產生的瞬態過電壓影響。
對於微波通信設備、移動機站通信設備及雷達設備等使用的整流電源,宜視其工作電壓的保護需要分別選用工作電壓適配的直流電源防雷器作為末級保護。
第四級及四級以上
根據被保護設備的耐壓等級,假如兩級防雷就可以做到限制電壓低於設備的耐壓水平,就只需要做兩級保護,假如設備的耐壓水平較低,可能需要四級甚至更多級的保護。第四級保護其雷電通流容量不應低於5KA。

作用

雷電放電可能發生在雲層之間或雲層內部,或雲層對地之間;另外許多大容量電氣設備的使用帶來的內部浪涌,對供電系統(中國低壓供電系統標準:AC50Hz220/380V)和用電設備的影響以及防雷和防浪涌的保護,已成為人們關注的焦點。
雲層與地之間的雷擊放電,由一次或若干次單獨的閃電組成,每次閃電都攜帶若干幅值很高、持續時間很短的電流。一個典型的雷電放電將包括二次或三次的閃電,每次閃電之間大約相隔二十分之一秒的時間。大多數閃電電流在10,000至100,000安培的範圍之間降落,其持續時間一般小於100微秒。
供電系統內部由於大容量設備和變頻設備等的使用,帶來日益嚴重的內部浪涌問題。我們將其歸結為瞬態過電壓(TVS)的影響。任何用電設備都存在供電電源電壓的允許範圍。有時即便是很窄的過電壓衝擊也會造成設備的電源或全部損壞。瞬態過電壓(TVS)破壞作用就是這樣。特別是對一些敏感的微電子設備,有時很小的浪涌衝擊就可能造成致命的損壞。

安裝方法

浪涌保護器採用35MM標準導軌安裝
對於固定式SPD,常規安裝應遵循下述步驟:
1)確定放電電流路徑
2)標記在設備終端引起的額外電壓降的導線,。
3)為避免不必要的感應迴路,應標記每一設備的PE導體,
4)設備與SPD之間建立等電位連線。
5)要進行多級SPD的能量協調
為了限制安裝後的保護部分和不受保護的設備部分之間感應耦合,需進行一定測量。通過感應源與犧牲電路的分離、迴路角度的選擇和閉合迴路區域的限制能降低互感,
當載流分量導線是閉合迴路的一部分時,由於此導線接近電路而使迴路和感應電壓而減少。
一般來說,將被保護導線和沒被保護的導線分開比較好,而且,應該與接地線分開。同時,為了避免動力電纜和通信電纜之間的瞬態正交耦合,應該進行必要的測量

熱門詞條

聯絡我們