非線性數學物理方法

非線性數學物理方法,作者,樓森岳,唐曉艷,由科學出版社於2006-12-1出版。

基本信息

內容提要

非線性數學物理方法

本書研究如何將線性科學中適用的強有力的基本方法發展推廣到非線性科學。書中全面系統論述作者及其課題組近幾年建立的新研究方法,如多線性分離變數法、泛函分離變數法和導數相關泛函分離變數法、形變映射法、方程推導的非平均法等。本書還系統介紹了在非線性數學物理嚴格解研究方面的一些其他重要方法及其最新發展,如有限和無限區域的反散射方法、形式分離變數法、奇性分析法、對稱性約化方法、達布變換方法和廣田直接法等等。書中利用這些方法,對非線性系統中的各種局域激發模式及其相互作用作了詳盡的描述。

本書可作為高等院校物理系和數學系等理工科高年級本科生選修課教材和研究生專業基礎課教材,也可供物理、數學、力學、計算機、大氣和海洋科學等非線性科學領域的研究人員參考。

圖書目錄

前言

第一章 緒論

1.1 孤立波和孤立子

1.2 可積性

1.3 非線性系統的數學研究手段簡介

1.4 非線性激發模式及其相互作用研究狀況

第二章 非線性數學物理方程的導出

2.1 VCKdV型方程的導出

2.2 VCMKdV型方程的導出

2.3 VCNLS型方程的導出

2.4 耦合KdV方程的導出

第三章 非線性方程的行波法

3.1 線性波動方程的行波法

3.2 非線性系統的行波約化

3.3 一般函式展開法:Ø(n,m)展開法

3.4 行波形變映射法

第四章 多線性分離變數法

4.1 多線性分離變數法

4.2 多線性分離變數解

4.3 一般多線性分離變數法

4.4 非線性局域激發模式

4.5 討論與小結

第五章 泛函分離變數法

5.1 GCS、FSS和DDFSS的基本理論

5.2 泛函分離變數法

5.3 泛函分離變數解

5.4 導數相關泛函分離變數法

5.5 導數相關泛函分離變數解

5.6 小結

第六章 形式分離變數法

……

第七章 非線性傅立葉變換方法

第八章 非線性方程的其他研究方法

參考文獻

附錄A 偏微分方程組

附錄B 偏微分方程組

附錄C 偏微分方程組

相關詞條

相關搜尋

熱門詞條

聯絡我們